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A b s t r a c t .  Xinmei's digital signature scheme and the scheme's modified 
version as proposed by Ham and Wang have been shown by the authors 
and others to be susceptible to several different attacks. The authors 
have since devised and presented a scheme that is impervious to the 
attacks that were successfully applied to the earher schemes. It is shown 
in this paper that this new scheme and Xinmei's scheme are vulnerable 
to universal forgeries. Equipped with this attack and the earher ones, 
general remarks about digital signature schemes based on linear error- 
correcting block codes are presented. 

1 Introduction 

In 1990, Xinmei presented a true t rapdoor digital signature scheme based on 
linear error-correcting block codes. The scheme was later modified by H a m  and 
Wang to reduce the threat  of selective forgery. Both schemes were subsequently 
shown by the authors and others to be susceptible to a variety of attacks. The 
authors then devised a scheme that  is impervious to the attacks that  were suc- 
cessful on the previous schemes. It  is shown in this paper that  this new scheme as 
well as Xinmei 's  scheme are vulnerable to universal forgeries. Equipped with this 
a t tack and the previous ones, general remarks about digital signature schemes 
based on linear error-correcting block codes are concluded. These remarks may 
be used as guidelines to construct a secure scheme. The next two sections contain 
brief reviews of Xinmei 's  and the authors '  digital signature schemes. This is fol- 
lowed by a discussion of two efficient attacks that  result in universal forgery for 
both  schemes. The final section sets out several requirements for a truly secure 
digital signature scheme based on linear block error correcting codes. 

2 Xinmei's  Digital Signature Scheme 

In Xinmei 's  digital signature scheme [13], each user, say user A, chooses an (n, k) 
binary Goppa  code CA that  has the ability to correct tA err&s. A k x n binary 
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generator matrix GA and an (n - k) x n binary parity check matrix HA are then 
selected for CA. User A finds an n x k binary matrix G* such that  GAG*A = Ik, 
where Ik is the k x k identity matrix. User A selects two nonsingular binary 
matrices: an n x n matrix PA and a k x k matrix SA, then he/she computes the 
following matrices: 

JA = PZlG* S; 1 (1) 

W,, = G* S; 1 (2) 
TA --1 T ----- P ;  H A. (3) 

User A publishes JA, WA, TA, HA, tA, and t~ where t~ < tA, but SAGA and 
PA constitute the private key. 

User A obtains the n-bit signature cj of the k-bit message mj by computing 

cj = (e__j @ mjSAG,)PA, (4) 

where e_j is a random n-bit error vector of Hamming weight wH(e__j) = t~ < 
tA. The receiver validates the signature cj by applying the Berlekamp-Massey 
algorithm on the syndrome cjTA = e4HT to obtain e_j, which must have weight 
of t~. Then JA, WA, and e_j are used to recover mj by computing the expression 

= e wA. (5) 

In [1] the linearity of the code and knowledge of the error vectors are exploited 
in a chosen-message attack that  results in a total break of Xinmei's scheme. The 
attack transforms the cryptanalytic problem into a pair of systems of linear 
equations: one containing n equations in n variables, and the other containing k 
equations in k variables. The complexity of this attack is thus O(n3). 

It was observed by Ham and Wang in [5] that  the combination of valid sig- 
natures of some messages yields a valid signature for another message; Xinmei's 
scheme is thus vulnerable to selective forgeries. Harn and Wang proposed a mod- 
ification of Xinmei's scheme that appears to secure it against selective forgery. 
Their scheme has been shown to be totally breakable under known-message at- 
tack [2]. In [12] van Tilburg devised a direct attack that totally breaks both the 
Xinmei scheme and the Ham-Wang modified version of Xinmei's scheme. Under 
such attack the private key is directly obtained from the public key. 

3 T h e  A u t h o r s '  S c h e m e  

The authors have presented a scheme [3] that  overcomes the weaknesses of Xin- 
mei's scheme and the Ham-Wang scheme. In the authors' scheme, each user, say 
user A, selects an (n, k) binary irreducible Goppa code CA that  has the ability to 
correct tA errors. User A then selects a k x n binary generator matrix GA and an 
(n - k) x n binary parity check matrix HA for the code CA. The user then finds 
G~ such that  GAG*A = Ik, where Ik is the k x k identity matrix. A nonsingular 
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binary n x n matr ix  P^ is then generated, and the matrices G" = P[1G* A and 
H ' =  - 1  T P~ H A are computed. Finally, user A selects an n x I binary matr ix R ,  of 
rank n, where n < l, and determines R~ such that WA W2 = I,,. The public key 
consists of G~,, H ' ,  HA, R A, tA, and t~, where t~ is an integer such that t~, < tA. 
The private key consists of the matrices GA, PA, G~, and RA. Furthermore, a 
nonlinear noninvertible function f (~ ,  y_) is made available to all users, where x_ is 
a binary k-tuple, y_ is a binary n-tuple, and the output  value is a binary k-tuple. 
The function f can be implemented in a similar fashion to the DES [10]. 

A k-bit message mj is signed in the following manner. A random binary 
error vector zj of length n and weight t~ is selected. A random /-bit vector 
e_j of arbitrary non-zero weight is also selected. The /-bit signature s_j is then 
computed using the expression 

s__j = [(zj $ [/(m__i, z__j) �9 zjG~]GA)P,, ~ e 4 R[]RA @ e_j. (6) 

s_j and rnj are transmitted. The signature is validated by first computing 

vj = s_jR: = (zj . [f(rnj,z__j) E)zjG*^]GA)PA. (7) 

The Berlekamp-Massey algorithm is then applied to the syndrome v__j H~ = z_jH~ 
to obtain z_r, which must have weight of t~. Then G~ is used to recover f ( m j ,  z i) 
as v_jG'. Finally v_jG'^ is compared with the hashing function value f(m__i, z__j) 
obtained using the received mj and the computed z__j. The signature is accepted 
if the two are identical. 

The scheme is impervious to the attacks that are successful on Xinmei's 
scheme and the Ham-Wang scheme. However, this scheme as well as the previous 
ones are vulnerable to universal forgery as will be shown in the next section. We 
will first show that  the matr ix RA has no cryptographir significance and the 
problem is reduced to generating an n-bit vector v_j that is accepted by the 
validation process, for there exits an n x I binary matr ix R ~ such that ~ * R R A  = I,~ 
and sj is then obtained as s__j = vj R ~. The matrix R t can be found in polynomial 
time as follows, n linearly independent rows of W2 are selected (this can be 
done by row reduction of the matrix W*, requiring O(ln 2) bit operations). Let 
the n linearly independent rows be numbered as ll ,12,..-,l ,~. The n linearly 
independent rows are then inverted in O(n 3) bit operations. The columns of the 
inverted matr ix correspond to columns 11,12,.-., In of R ~ and the other l - n 
columns of R ~ are filled with zeros. 

4 Universal Forgery 

4.1 A t t a c k  I 

Knowledge of the error vectors alone could jeopardize the security of the schemes; 
a known-message attack is devised that allows the cryptanalyst to universally 
forge signatures. We begin by noting that, in Xinmei's scheme, 

cj = (tj e ~__iSAGA)PA = ~ ~ mjEA, (8) 
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where e) = e_jPA and EA = SAGAPA. Similarly, in the other scheme, 

vj = (zj @ [f(mj ,zj)  ~ EjG*A]GA)PA --= z~ G f ( m j ,  z_j)E~, (9) 

where z~ = z~PA ~ z_jG*GAPA and E" = GAPA. 
Thus if EA (respectively E~) and at least one e__~ (respectively z_~) are known, 

then the user's signature can be universally forged in Xinmei's scheme (respec- 
tively the other scheme). For example, if the message m I is to be signed, then the 
cryptanalyst can produce the signature c_ a as c_ a = s @ m_~E~ in Xinmei's scheme 
(respectively as c~ = z~ | f(rnt, z j )E"  in the other scheme). Furthermore, if EA 
(respectively E ' )  is known, then e__~ (respectively z~) can be readily found. Hence 
the cryptanalyst needs only to find EA (respectively E ' ) .  

Let cj and _c 4, (respectively v_j and v_j,) be the signatures of the messages 
rnj and mj ,  under Xinmei's scheme (respectively the other scheme), where e__j 
(respectively z_j) is the error vector used in both signatures. Then cj | cj, = 
(mj G mj,)EA (respectively v i @ v_j, = (mj ~ mj,)E~). Now the cryptanalyst 
needs k pairs of signatures such that each pair uses the same error vector. 
The k expressions {cj @ _cj, = (mj @ mj,)EA}l<j,j,<k (respectively {vj G vj, = 
(mj G mj,)E~}l<_j,j,<_k) form a linear system which allows us to solve for EA 
(respectively E~) in O(k 3) provided that set of the messages {m_ 4 @mj,}~<j,j,<k 
are linearly independent. The cryptanalyst can then find one or more e)'s (re- 
spectively z~ 's) by using EA (respectively E ' ) .  

The efficiency of this attack can be expressed as the number of signatures 
l that  must be obtained before the attack succeeds. It is assumed that the sig- 
natures generated by a user are uniformly distributed. Let N be the number of 
possible error vectors that can be invoked by the signer. Clearly 

n )  (10) 
N =  t~  " 

The problem exhibits a great resemblance to the birthday paradox. We expect 
the number of signatures required for this universal forgery attack to be O(v/-N). 
To support  this argument, we take an approach similar to the one given in [4, 
pp. 279-281]. 

Let the signatures be grouped into r sets such that each set contains s signa- 
tures, where s 2 <__ N. For any two sets, the total number of comparisons is s 2 and 
the probability that  a comparison would yield a match is 1 /N (the match event 
refers to the event when two signatures from two different sets have the same 
error vector, a match within a set is not considered here). Thus the probability 
of a match between any two sets is approximately s2/N. By making s = v/'N, 
there is then a match between any two sets with overwhelming probability (it 
was mentioned in [9] that  there are at least three elements in common between 

two such sets). Furthermore, r is chosen such that ( 2 ) > _  k, and thus any 
\ / 

r= [l+12VFf'-2 ~ ] .  Thetotalnumberofsignaturesneededisthusl=O(rVrlV). 
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The attack requires two tables: one containing the signatures and another con- 
taining the error vectors. The space requirement is thus O[l(n + [log2N])] bits, 
where each error vector requires [log2N] bits. O(Nk)  comparisons are needed 
for this attack. But this complexity can be dramatically reduced, however, by 
sorting the whole 1 signatures instead of comparing t h e  elements one by one. 
This sorting technique would have a complexity of O(llog: l) comparisons and 
since each comparison involves two [log2N]-bit numbers. It follows that the bit 
complexity is O([log2N] l log~ l) bit operations. 

Finally we must consider the question of whether the set of the messages 
{mj  @ mj,}l<_Lj,<_k are linearly independent. It is to be noted that  the number 

of k x k binar~ invertible matrices is 0.29 x 2 k~, and the number of k x k binary 
matrices is 2 k . Thus the probability of randomly selecting any k x k binary 
matrix and having it be invertible is thus 0.29, and the expected number of 
repetitions is thus 3.4. The number of signatures that must be collected is thus 
increased on the average by a factor slightly more than 3. 

4.2 A t t a c k  II 

In Xinmei's scheme, cj must satisfy the equations cjTA = e jH w and cjJA = 
ejW^ ~ m j .  This leads to cj[TA I J^] = [ej HT ]ejWA (9 mj], or simply c jX  = Y ,  
where Y = [e_jH• [ e__jWA @ mj] is an n • n matrix and X = [TA I g^] is an 
n x n matrix which is publicly known. Similarly, in the authors' scheme, vj 
should satisfy v jH'  A = z.jH: and vjG~ = f ( m j ,  z.j). This leads to v.j[H~ ]G~] = 
[gjHA I f (mj ,~ j ) ] ,  or s~mply v_V4)~' = Y', w-hereY' = ~jHA ] f(-'_mj,z_j)] is an 
n • n matrix and X'  = [H~ I G~] is an n • n matrix which is publicly known. 

The analyst computes Y (respectively Y~), where rnj is the message to be 
forged and e_ 4 (respectively zj)  has weight t~, then cj (respectively v_j) can be 
easily obtained as _cj = Y X  - I  (respectively v_j = Y~X~-I), provided that X 
(respectively X ~) is full rank. The following lemma shows that  X and X ~ are 
both full rank matrices, and thus signatures can be universally forged in both 
schemes. 

L e m m a  1 X and X '  are full rank matrices. 

Proof: We will only prove the lemma for X; the result for X ~ can be proven in 
a similar manner. Let w be an n-bit column vector and partition w into two 
vectors, an (n - k)-bit column vector w_ 1 and a k-bit column vector w~. Thus 
X w  [TA [JA]~= -~ ~ -- = [Pd HA I p[1G**S;1] w = p[1HTwl  @ p[1G**S;lw--2 �9 If it 
holds that Xw = 0n• (the all-zero n-bit column vector) if and only i fw  = 0,• 
then X has rank n. For __w = 0nxl, we have Xw = 0nxl. For Xw = 0nxl, we 
have P~IHTwl  ~ P~IG**S-;Iw2 = 0n• Premultiplying by GAPA, we obtain 
GAHTw__I ~ GAGASA w__2 -= 0kxl. Since HA is the null space of GA, we have 
G ^ H  T = 0kx(n-k) and hence GAG*AS;IT_2 = 0k• or S~-1w2 = 01,xl and thus 

T w2 = 0k• for S^ is nonsingular. Hence HAw 1 = 0n• Since H T has rank n - k ,  

then w t = 0(,-k)xl-  
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Li [7] mentioned that  if the public key in Xinmei's scheme is chosen such that  
X is not a full rank matrix,  then the scheme is secure. Lemma 1, on the contrary, 
shows that  X is always full rank, regardless of the seJection of the public key. 

5 C o n c l u s i o n  

Examining the previous digital signature schemes based on linear error-correcting 
block codes, the following can be concluded: 

- The linearity of the code allows selective forgery [5]. This, however, can be 
prevented by signing the image of the message under a nonlinear noninvert- 
ible transformation [5] instead of signing the message itself. It is essential 
that  the transformation is a function of the error vector [3] to prevent the 
chosen-message attack devised in [1]. 

- Revealing the error vectors permits universal forgery as shown in this paper 
(attack I). This attack can be prevented if the error vectors are not revealed 
or the parameters of the code are chosen properly to make this attack infea- 
sible. 

- Revealing information about the right inverse of the generator matr ix is 
equivalent to revealing some information about k linearly independent columns 
of the generator matrix.  This is the reason for the success of the direct attack 
on the Xinmei and Ham-Wang schemes [12] and the universal forgery attack 
(attack II) described here. (It is to be noted that  the probabilistic ciphertext- 
only attacks launched on McEliece's system [8] as described in [6, 8, 11] are 
all based on searching for k linearly independent columns of the generator 
matrix).  Thus the public key should not contain information (even in scram- 
bled form) about k linearly independent columns of the generator matrix. 

R e f e r e n c e s  

1. M. Alabbadi and S. B. Wicker. Cryptanalysis of the Harn and Wang modification 
of the Xinmei digital signature scheme. Electronics Letters, 28(18):1756-1758, 27th 
August 1992. 

2. M. Alabbaxii and S. B. Wicker. Security of Xinmei's digital signature scheme. 
Electronics Letters, 28(9):890-891, 23rd April 1992. 

3. M. Alabbadi and S. B. Wicker. Digital signature schemes based on error-correcting 
codes. In IEEE International Symposium on Information Theory, January 17-22 
1993. San Antonio, Texas, U.S.A. 

4. D. W. Davies and W. L. Price. Security for Computer Networks. John Wiley and 
Sons, 1989. 

5. L. Ham and D.-C. Wang. Cryptanalysis and modification of digital signature 
scheme based on error-correcting codes. Electronics Letters, 28(2):157-159, 16th 
January 1992. 

6. P. J. Lee and E. F. Brickell. An obsevation on the security of McEliece's public- 
key cryptosystem. In C. G. Gunther, editor, Lecture Notes in Computer Science 
# 330, Advances in Cryptology-Eurocrypt '88 Proceedings, pages 275-280, Davos, 
Switzerland, May 25-27 1988. Springer-Verlag. 



12 Susceptibility of Digital Signature Schemes Based on Error-Correcting Codes 

7. Yuan-Xing Li. An attack on Xinmei's digital signature scheme. In IEEE Inter- 
national Symposium on Information Theory, January 17-22 1993. San Antonio, 
Texas, U.S.A. 

8. R. J. McEliece. Public-key cryptosystem based on algebraic coding theory. JPL 
DSN Progress Report 42-44, Jet Propulsion Laboratory, California Institute of 
Technology, Pasadena, CA, U.S.A, Jan. & Feb. 1978. Pages 114-116. 

9. J. Meijers and J. van Tflburg. On the Rao-Nam private-key cryptosystem using 
linear codes. In IEEE International Symposium on Information Theory, page 126, 
June 24-28 1991. Budapest, Hungary. 

10. National Bureau of Standard. Data Encryption Standard, Federal ln]ormation 
Processing Standard (FIPS) Publication 46, January 1977. U.S. Department of 
Commerce, Washington, D.C. 

11. J. van Tilburg. On the McEliece public-key cryptosystem. In S. Goldwasser, edi- 
tor, Lecture Notes in Computer Science # 403, Advances in Cryptology-Crypto '88 
Proceedings, pages 119-131, Santa Barbara, Ca., Aug. 21-25 1988. Springer-Verlag. 

12. J. van Tilburg. Cryptanalysis of Xinmei digital signature scheme. Electronics 
Letters, 28(20):1935-1936, 24th September 1992. 

13. W. Xinmei. Digital signature scheme based on error-correcting codes. Electronics 
Letters, 26(13):898-899, 21st June 1990. 


