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A Digital Signature Scheme Constructed with Error.correcting Codes

The authors of this paper, LI Yuanxing and LIANG Chuanjia, are at the
Xi 'an ElectronicsrScience, and Technical University. The paper appeared in
Acta Electronica Sinica, volume 19 (1991), no. 4, p. 102-104. The trans-
lation was carried out byl

I
Z211, then corrected and improved by

I I W3152. The manuscript, representing a doctoral-level research
topzc funded by the National Education Commission, was first received by the
publishers in January of 1990; the final form was received in December 1990.

Abstract. In this paper a digital signature scheme based on error-
correcting codes is proposed for the first time.

--...
i 1. Introduction

In 1978, McEliece for the first time used error-correcting codes to con-'
struct a type of public-key cryptosystem [1], combining encryption with errOf-
correcting codes. In the following ten years Of so, much research by Chinese
and foreign scholars has been devoted to the relation between encryption and
error-correcting codes, and abundant research results have been obtained [2-
6]. However, there have so far been no open-source research papers on how
to use error-correcting codes to construct digital signature schemes. This
paper proposes a type of digital signature scheme based on error-correcting
codes. The paper analyzes a few performance norms of the scheme and gives
requirements which the parameters should satisfy for the scheme's security.
Research shows that the scheme is secure, is easily designed and implemented,
has speed advantages, and its public and secret keys are not too large. Of
course the information rate of the scheme is comparatively low.

2. The construction of the digital signature scheme

We let A and B be two users, and A wants t'o transmit to B a message
which needs to have a digital signature.

2.1. Generating the public and secret keys

1
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To allow A to implement a message signature, we first choose a linear
(n,k,t) block code over a suitable GF(q). Here q and n,k,t represent re-
spectivelya prime power and the code length, dimension, and error-correcting
capabiE ty of the error-correcting code. Let A choose randomly an (n, k, t)
Goppa code over GF(q) and denote the k x n generator matrix and the
(n - k) x n pari ty-check matrix over GF (q) be denoted by G and H respec-
tively. As usual n ~ qm, and k ~ n - mt: m is a positive integer. A further

randomly chooses an n x n permutation matrix P over GF( q). Compute

H' = H P. Let H' be public, but keep If and P secret.

2.2. Achieving the signature

Let L be the set of n-dimensional vectors over GF(q) which have Ham-
ming weight not exceeding t. Then

t

(
n

)
.

ILI=t; i ~q-1)',

where ILi denotes the number of elements in L. We know from coding theory
that a blC!ck code with error-correcting capability t can theoretically correct
qn-k error patterns but in practice, using the fast decoding algorithm, we can
guarantee correct decoding only for those error patterns belonging to 1. That
is, given an (n - k)-dimensional syndrome vector, since the actual decoder

decodes incompletely, one cannot guarantee an n-dimensional vector, i.e.,
that the error patterns give a 1-1 correspondence. However, for an arbitrary
EEL, there is a unique corresponding syndrome S, and EHT = S. HT
denotes the transpose of .H. Conversely. when the decoder decodes this 8.
we obtain uniquely the original EEL. Hence A, before achieving the above
signature, should do the following preparatory operations.

(I) First divide the message which requires a signature into i-long groups

over GF(q). This length I must satisfy: if A randomly chooses in L a subset U
comprising ql elements, arid computes for every element in U a corresponding
syndrome, then this can be accomplished in a reasonable time.

(II) A randomly chooses in L a subset U comprising ql elements, and
computes for every element in U a unique syndrome. Namely_ for E E [',

compute EHT = S.
(III) Establish a 1-1 correspondence between the ql i-dimensional message

vectors and the q' syndromes, and make it public.

')
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It is easy for A to accomplish each of the above three steps. Then A
can achieve the signature for his message by using the following three-step
procedure.

(1) let M be an arbitrary i-dimensional message vector. Based on the
published correspondence relation, find the corresponding syndrome S. Feed
S into the Goppa code decoder, and obtain uniquely the n-dimensional error
pattern E. Namely 5 == EHT. Also the weight of E does not exceed t.

(2) Right-multiply E by (pT)-1, thus obtaining the signature C for JvI,
where C = E(PT)-1 ==EP. [The last equality is valid only if pT = p-1,
which we should not require. I think he should have omitted this last equality.
- edit.)

(3) Transmit C to B.

2.3. Verifying the signature

(1) When B receives C, he uses A's public key H' to compute C(H'f.

C(H'f = EPpT HT ==S. [Note that this does not require C == EP; instead
C ==

E(pT)-l is the critical matter. - edit.]

(2) Based on A's public correspondence relation, from 5 find M, thus
accurately recovering the message vector, and achieving the verification.

Obviously, any other user could emulate B, using A's public key and
public correspondence relation, to verify A's signature.

3. A proof of the security of the scheme

We may as well let the adversary employ the following methods as he
tries to forge A's signature.

1. If he can from the public key H' factor out H and P, then A's signature
can be forged. However, Hand P are both randomly generated by A, so the
possible number of Hand P respectively are It and n!(q -It. Here [7]

Also the factors of H' are not unique. 'Therefore, to factor out the secret keys
Hand P from H' the computational complexities respectively are CLM1=

3
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O(qmt) and CLMZ= O(n[(q - It). [Of course one need not perform both of

these tasks. And nonuniqueness does not favor the cryptographer! - edit.}
2. Based on the public H' and the already known S (i.e., M), he could try

to obtain the signature C from solving the equations C(H'f = S. However,

H' represents a general linear block code, and C E L, thus trying to obtain
the signature by solving equations is an NP-complete problem [8].

3. Based on L, he could try to guess the signature of Ai directly. The
computational complexity of guessing the signature is CLM3= O(ILi).

If n, k, and t satisfy definite requirements, CLMl, CLMZ,and CL\13become
very large in magnitude, so it will be difficult for the adversary's methods to
forge A's signature to prove effective.

4, Design of parameters and analysis of the scheme's performance

From security analysis we know that the computational complexities of
the possible analytic methods are respectively CLMl, CLMZ, and CLM3. For
simplicity, take q = 2; then CLMl = O(2mt), CLM2 := O(n!), and CLM3 :=

O(L~==o(7)).

Let A choose an irreducible (n, k, t) Goppa code over GF(2); then n := 2m
and k ~ n - mt. Obviously if we choose m > 6 and t > 10 then CLM! and
CLM2 both exceed 0(26°). In this case n > 64 and n- R > 60. [R. mentioned
below, is the information rate *. - edit.]

Below we analyze conditions which nand t should satisfy so that Cu..f3
exceeds 0(26°). Since 2t = d - 1 ~ n - k,

~ ::; ~ ( 1 - ~)n 2 n

.
I

<-2'

From [9] we get

(1)

where

Hz(t In) = -;; logz ; - (1 - *) log2 (1 - ~) .

4
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Thus
CLM3 ~ O(2nH2(tlnJ). (2)

For 0 < ~< t, H2(t j n) is a monotone increasing function; if .; :::: 0.1 then
Hz(tln) = 0.469. If we choose n = 128 then n. H2(tjn) ::::::60.03, so if we
choose n = 128 and; 2: 0.1 then CLM3 > 0(26°).

Integrating the requirements on CLMl and CLM2, if we choose n :::: 128
and t 2: 13, then the signature scheme will have sufficient security. In this
case n - k > 91.

For example, A can choose an irreducibledegree-13 polynomial g(x) over
GF(27), from which he can generate an irreducible (128,37,13) Goppa code.
Using this code, A can perform digital signatures.

The following analysis describes several performance norms of the scheme.

(1). Achieving the complexity

Achieving the above scheme is very convenient. Provided that A has a
Goppa code decoder he can sign messages. The signature process is also
fast. Because the decoding speed of the Goppa code decoder has ([9J) a
complexity of about O( n log~ n), a single message vector signature requires
only about n log~ n arithmetic operations. Also verification of the received C
involves only adding the corresponding columns chosen in H'. Since C E L,
verification is at most the addition of t n-dimensional column vectors, so
requires at most tn arithmetic operations. Thus verification is also very fast.

(2). The quantity of public and secret key

The quantities of public and secret key are respectively (n - k) x n bits
and (2n - k) x n bits. If we use the above example, then the quantities
of public and secret key respectively are only about 11,000 .its and 28,000
bits. In addition to wanting to publish H', A will also need to publish
the correspondence between the message vectors and their syndromes. If A
agrees on a permutation sequence of message vectors, with agreement based
on the decimal-based integers from 0 to 2/ - 1 in increasing order, then A
will also need to publish this quantity of (n - k )2/ bits. Again employing the
ab~ve example, and choosing l = 15, A willneed to publish about 2.980,000
bits of syndromes. (note: in the Ms public-key system the quantity of public
key is about 2,840,000 bits [2]).

(3). The information rate'

5
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The information rate of the scheme is R = 1.. In the above example, R ~
n

0.12. The comparatively low information rate of this scheme is a weakness.
By increasing I, R can be raised to a certain extent. If I = 30 then R ~ 0.23.

Another point we need to address is as follows. Prior to performing
the signature. A needs to compute in advance the 21 syndromes of the n-
dimensional vectors in U. A can use the Gappa code decoder to accomplish
this (computing the syndromes corresponds to the first step of decoding),
in time already included in the n log; n arithmetic operations needed for a
single signature. Hence if A computes in advance the 21syndromes, it cannot
increase the time and difficulty to achieve the scheme.

5. Concluding remarks

Error-correcting coding theory has continued to mature since its origins
in the '50s. More and more, research on the application of error-correcting
codes is becoming of value to the public. In this paper error-correcting codes
were used to construct a type of digital signature scheme, pointing out an im-
portant application of error-correcting codes in cryptologic research. thereby
having significance in both theory and practice. New applications of error-
correcting codes in cryptology are attracting people to conduct new and more
profound research.

We v,'armly thank professors \-VANG Xinmei and .HU Zheng for beneficial

discussions.

Bibliography

1. R. J. McEliece, DSN Progress Report 42~44 (l9i8). 114-116.

2. WANG Xinmei. Acta Electronica Sinica 11 (1986), no. ~_ 8~-90. [in
Chinese)

3. vVANG Xinmei, J. China Inst. Communic. 7 (1986), no. .'5. 1-6. [in
Chinese]

4. WANG Xinmei. J. China lnst. Communic. 10 (1989), no. .1. 1-6. [in
Chinese]

5. R. J. McEliece et aI., Conununic. ACM, 24 (1981), 583-584.

6

~---- --



\ DOCID:

I-'~.
i...
...

~--~-

_u___._____

3097967

6. WANG Xinmei, J. China lnst. Communic. 8 (1987), no. 4, 1-9. [in
Chinese]

7. E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, 1968.

8. E. R. BerIekamp et al., IEEE Trans. Info. Thea. 24 (1978), 384-386.

9. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-correcting
Codes, North-Holland, 1977.

7

.

---~



'DOCID: 3097967

DISTRIBUTION:

C61

C7

E42

CF
Z Technical Library (2)

~...

'-- - --'--" --.

.

8

--

(b) (3)-P.L. 86-36

~-_.~,-._-



(b) (3)-P.L.

86-36

I I

I I

(b) (1)

DOCID: 3097967 >
.

CONFIDENTIAL//MR

.

:1
!I

'.
J!!I

'..

:1

":-
.-
'''''..-
--
~

9

-CONFIDENTI~L//MR
\


