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D. Engelbert, R. Overbe
k and A. S
hmidt: The M
Elie
e Cryptosystem 41 Introdu
tionIn this paper we want to give an overview over the M
Elie
e 
ryptosystem andthe primitives it is based on. First, we give some introdu
tion into 
oding theoryand the 
onstru
tion prin
iple of the 
ryptosystem. In the se
ond se
tion, wepresent Goppa 
odes, whi
h at the moment seem to be the best 
hoi
e for 
ryp-tographi
 appli
ations. In the se
tions three to �ve we present known atta
kson the M
Elie
e PKC and 
onsequen
es for the 
hoi
e of system parameters.Afterwards we will present CCA2-se
ure 
onversions and show how to buildother 
ryptographi
 proto
ols from the basi
 s
heme. Finally we will dis
ussperforman
e and se
ure 
hoi
es of parameters for the M
Elie
e PKC.1.1 HistoryIn 1978 R. M
Elie
e proposed the �rst publi
 key 
ryptosystem whi
h is basedon 
oding theory. M
Elie
e's proposal to use Goppa 
odes for 
ryptographi
 ap-pli
ations is one of the oldest publi
 key 
ryptosystems and remains unbrokenfor appropriate system parameters. In 1986, Niederreiter proposed a di�erents
heme whi
h uses GRS 
odes. This proposal is equivalent (dual) to M
Elie
e'sproposal if we substitute the GRS 
odes by Goppa 
odes [33℄. Sidelnikov andShestakov showed 1992, that Niederreiter's proposal to use GRS 
odes is inse-
ure.Several proposals were made to modify M
Elie
e's original s
heme (see e.g.[17℄, [16℄, [18℄, [46℄ and [26℄). Most of them repla
e the Goppa 
odes with other
odes. However, most of them turned out to be inse
ure or ineÆ
ient 
omparedto M
Elie
e's original proposal (see e.g. [38℄ or [28℄).The most important variants of M
Elie
e's s
heme are the ones proposedby Kobara and Imai in 2001. These variants are CCA2-se
ure and provably asse
ure as the original s
heme [27℄.Parallel to the e�orts to build an eÆ
ient en
ryption s
heme based on 
od-ing theory, there were several attempts to build other 
ryptographi
 proto
olsbased on error 
orre
ting 
odes. Most e�orts to build a signature s
heme failed(
ompare [52℄, [22℄, [2℄ and [50℄), until �nally in 2001 Courtois, Finiasz andSendrier made a promising proposal [11℄. In addition, there exists an identi�-
ation s
heme by Stern [49℄, whi
h is based on 
oding theory.There are also attempts to build fast hash fun
tions and random numbergenerators using the prin
iples of 
oding theory (see e.g. [3℄, [13℄). All in all,this provides suÆ
ient motivation to have a 
loser look at the M
Elie
e 
ryp-tosystem, as an serious alternative to the established PKCs based on numbertheory.1.2 Coding Theory and ProblemsThe se
urity of the 
ryptosystems reviewed in this paper is based on the diÆ
ultyof some 
lassi
al problems of 
oding theory. Here we give an introdu
tion intothe topi
 of 
oding theory.
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k and A. S
hmidt: The M
Elie
e Cryptosystem 5De�nition 1.2.1 An (n; k)-
ode C over a �nite �eld F is a k-dimensional sub-ve
torspa
e of the ve
tor spa
e Fn . We 
all C an (n; k; d)-
ode if the min-imum distan
e is d = minx;y2C dist (x;y), where \dist" denotes a distan
efun
tion, e.g. hamming distan
e. The distan
e of x 2 Fn to the null-ve
torwt (x) := dist (0;x) is 
alled weight of x.De�nition 1.2.2 The matrix C 2 Fk�n is a generator matrix for the (n; k)
ode C over F, if the rows of C span C over F. The matrix H 2 F(n�k)�n is
alled 
he
k matrix for the 
ode C if H> is the right kernel of C. The 
odegenerated by H is 
alled dual 
ode of C and denoted by C?.With these de�nitions, we are able to de�ne some basi
 problems of 
odingtheory. Here the distan
e fun
tion used will be the hamming distan
e although,there exist other notions of distan
e.Problem 1.2.3 The general de
oding problem for linear 
odes is de�ned asfollows:� Let C be an (n; k) linear 
ode over F and y 2 Fn .� Find x 2 C where dist (y;x) is minimal.Let e be a ve
tor of weight � t := � d�12 � and x 2 C. Then there is a uniquesolution to the general de
oding problem for y = x + e. The 
ode C is said tobe an t-error 
orre
ting 
ode.Problem 1.2.4 The problem of �nding weights (SUBSPACE WEIGHTS) of alinear 
ode is de�ned as follows:� Let C be an (n; k) linear 
ode over F and w 2 N.� Find x 2 C satisfying dist (0;x) = w.Our hope that we might be able to 
onstru
t se
ure 
ryptosystems based onthe problems above is based on the following result.Theorem 1.2.5 The general de
oding problem and the problem of �nding weightsare NP-hard.Proof. See [4℄.We present another problem based on the equivalen
e of 
odes:De�nition 1.2.6 Two (n; k) 
odes C and C0 over a �eld F are 
alled permutationequivalent if there exists a permutation � of the permutation group Sn over nelements, su
h thatC0 = � (C) = ��x��1(1); � � � ; x��1(n)� jx 2 C	 .The subgroup of Sn whi
h keeps C �xed will be 
alled Aut (C).



D. Engelbert, R. Overbe
k and A. S
hmidt: The M
Elie
e Cryptosystem 6Given two generator matri
es G and G0 the problem is to de
ide if the 
odesgenerated by the matri
es are permutation equivalent or not. In the 
ase whereF = F2 the de�nition of permutation equivalen
y 
oin
ides with the de�nitionof equivalen
y.De�nition 1.2.7 Two (n; k) 
odes C and C0 over F are 
alled equivalent if thereexists � 2 Sn, a n-tupel (ai)1�i�n 2 F� and a �eld automorphism � of F su
hthat x 2 C , �� �a��1(i)x��1(i)��1�i�n 2 C0In se
tion 3.3, we will see an algorithm whi
h solves the problem to de
idewhether two 
odes are permutation equivalent or not.Throughout this paper, we will use the following notation. We write G = hGiif the linear (n; k)-
ode G over F has the generator matrix G. We 
an write x 2 Gas (x1; � � � ; xn) 2 Kn . For any (ordered) subset fj1; � � � jmg = J � f1; � � �ng wedenote the ve
tor (xj1 ; � � � ; xjm) 2 Km with xJ . Similarly we denote by M�Jthe submatrix of a k � n matrix M 
onsisting of the 
olumns 
orresponding tothe indi
es of J and MJ0� = �M>��J0 for any (ordered) subset J 0 of f1; � � � ; kg.1.3 M
Elie
e PKCThis 
ryptosystem was proposed by M
Elie
e [37℄ and is the �rst, whi
h useserror 
orre
ting 
odes as a trapdoor. It remains unbroken in its original version.Although it uses Goppa 
odes (see se
tion 2) in the original des
ription, anysub
lass of the 
lass of alternant 
odes 
ould be used. However, it might notrea
h the desired se
urity (
ompare se
tion 3.2 or e.g. [38℄). The trapdoor forthe M
Elie
e Cryptosystem using Goppa 
odes is the knowledge of the Goppapolynomial used to generate the 
ode.We brie
y des
ribe the 
ryptosystem:� System Parameters: n, t 2 N, where t� n.� Key Generation: Given the parameters n, t generate the following ma-tri
es:G0 : k � n generator matrix of a binary irredu
ible (n; k) Goppa 
ode Gwhi
h 
an 
orre
t up to t errors, where k is 
hosen maximal.S : k � k random binary non-singular matrixP : n� n random permutation matrixThen, 
ompute the k � n matrix G = SG0P .� Publi
 Key: (G; t)� Private Key: (S; DG ;P), where DG is an eÆ
ient de
oding algorithm forG (see e.g. algorithm 2.3.1).
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k and A. S
hmidt: The M
Elie
e Cryptosystem 7� En
ryption: To en
rypt a plaintext m 2 f0; 1gk 
hoose a ve
tor z 2f0; 1gn of weight t randomly and 
ompute the 
iphertext 
 as follows:
 =mG� z .� De
ryption: To de
rypt a 
iphertext 
 
al
ulate
P�1 = (mS)G0 � zP�1�rst, and apply the de
oding algorithm DG for G to it. Sin
e 
P�1 has ahamming distan
e of t to the Goppa 
ode we obtain the 
odewordmSG0 = DG �
P�1� .Let J � f1; � � � ; ng be a set, su
h that G�J is invertible, then we 
an
ompute the plaintext m = (mSG0)J (G0�J )�1 S�1There are some restri
tions to the 
hoi
e of the M
Elie
e system parametersgiven by the atta
ks, if we want to get optimal se
urity. We are going to dis
ussthem later on.De�nition 1.3.1 The M
Elie
e problem is des
ribed as follows:� Given a M
Elie
e publi
 key (G; t) where G 2 f0; 1gk�n and a 
iphertext
 2 f0; 1gn,� Find the (unique) message m 2 f0; 1gk s.t. dist (mG; 
) = t.It is easy to see that someone who is able to solve the general de
odingproblem is able to solve the M
Elie
e problem. The reverse is presumably nottrue, as the 
ode G = hGi is not a random one, but permutation equivalent toa 
ode of a known 
lass (a Goppa 
ode in our de�nition). We 
an not assumethat the M
Elie
e-Problem is NP-hard. Solving the M
Elie
e-Problem wouldonly solve the General De
oding Problem in a 
ertain 
lass of 
odes and not forall 
odes.In the 
ase of M
Elie
e's original proposal, Canteaut and Chabaud state thefollowing: \The row s
rambler S has no 
ryptographi
 fun
tion; it only assuresfor M
Elie
e's system that the publi
 matrix is not systemati
 otherwise mostof the bits of the plain-text would be revealed" [7℄. However, for some variantsof M
Elie
e's PKC, this statement is not true, as e.g. in the 
ase of the CCA2-se
ure variants (whi
h we are going to present in se
tion 6). The importan
e ofP is not that easy to see. We will 
ome ba
k to this question in se
tion 3.1.4 Niederreiter PKCThe Niederreiter PKC is a knapsa
k-type 
ryptosystem whi
h uses an (n; k)-linear 
ode whi
h 
an 
orre
t up to t errors and for whi
h an eÆ
ient de
odingalgorithm is known. We des
ribe the 
ryptosystem brie
y:
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k and A. S
hmidt: The M
Elie
e Cryptosystem 8� System Parameters: n, t 2 N, where t� n.� Key Generation: Given the parameters n, t generate the following ma-tri
es:H: (n� k)� n 
he
k matrix of a binary irredu
ible Goppa 
ode Gof maximal dimension k whi
h 
an 
orre
t up to t errorsM: (n� k)� (n� k) random binary non-singular matrixP: n� n random permutation matrixThen, 
ompute the n� (n� k) matrix H0 = MHP.� Publi
 Key: (H0; t)� Private Key: (P;DG ;M), where DG is an eÆ
ient syndrome de
odingalgorithm for G (see e.g. algorithm 2.3.1).� En
ryption: A messagem is represented as a ve
tor e 2 f0; 1gn of weightt, 
alled plaintext. To en
rypt it, we 
ompute the syndromes = H0e> .� De
ryption: To de
rypt a 
iphertext s 
al
ulateM�1s = HPe>�rst, and apply the syndrome de
oding algorithm DG for G to it in orderto re
over Pe>. Now, we 
an obtain the plaintext e> = P�1Pe>The se
urity of the Niederreiter PKC and the M
Elie
e PKC are equivalent.An atta
ker who 
an break one is able to break the other and vi
e versa [33℄.2 Goppa CodesIn this paper, we 
onsider only irredu
ible binary Goppa 
odes. The followingreasons make them interesting for 
ryptography:� The lower bound for the minimum distan
e is easy to 
ompute.� The knowledge of the generating polynomial1 allows eÆ
ient error 
orre
-tion.� Without the knowledge of the generating polynomial no eÆ
ient algo-rithms for error 
orre
tion are known.For a 
omprehensive introdu
tion to Goppa 
odes see [36, 34, 23℄.1See below
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k and A. S
hmidt: The M
Elie
e Cryptosystem 92.1 De�nitionIn this se
tion, we will �rst de�ne Goppa 
odes. Based on this de�nition, we willdes
ribe a way to 
onstru
t a generator and a parity 
he
k matrix for Goppa
odes.Goppa 
odes were de�ned by V.D. Goppa in 1970 [21℄.De�nition 2.1.1 (Goppa polynomial, Syndrome, binary Goppa Codes)Let m and t be positive integers and letg(X) = tXi=0 giX i 2 F2m [X ℄be a moni
 polynomial of degree t 
alled Goppa polynomial andL = (
0; : : : ; 
n�1) 2 Fn2ma tuple of n distin
t elements su
h thatg(
i) 6= 0; for all 0 � i < n:For any ve
tor 
 = (
0; : : : ; 
n�1) 2 Fn2 , de�ne the syndrome of 
 byS
(X) = � n�1Xi=0 
ig(
i) g(X)� g(
i)X � 
i mod g(X). (1)The binary Goppa 
ode G(L; g(X)) over F2 is the set of all 
 = (
0; : : : ; 
n�1) 2Fn2 su
h that the identity S
(X) = 0 (2)holds in the polynomial ring F2m [X ℄ or equivalently ifS
(X) � n�1Xi=0 
iX � 
i � 0 mod g(X): (3)Thus, we have G(L; g(X)) = f
 2 Fn2 j S
(X) = 0g= f
 2 Fn2 j S
(X) � 0 mod g(X)gIf g(X) is irredu
ible over F2m , then G(L; g(X)) is 
alled an irredu
ible binaryGoppa 
ode.Remark 2.1.2 To emphasize the dependen
y of ve
tor 
 on sequen
e L, wesometimes write 
 = (

0 ; : : : ; 

n�1). The elements 
0; : : : ; 
n�1 2 F2m are
alled 
ode support.
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k and A. S
hmidt: The M
Elie
e Cryptosystem 10Goppa 
odes are linear 
odes. If g(X) is irredu
ible, we have g(
) 6= 0 for all
 2 F2m . Thus tuple L from the de�nition may 
ontain all elements of F2m .Now we will show how to 
onstru
t the parity 
he
k matrix of a Goppa 
odeG(L; g(X)). Sin
eg(X)� g(
i)X � 
i = tXj=0 gjX i � 
jiX � 
i = t�1Xs=0Xs tXj=s+1 gj
j�1�si ; for all 0 � i < n;we see that 
 2 G(L; g(X)), i� for all s = 0; : : : ; t� 1n�1Xi=0 0� 1g(
i) tXj=s+1 gj
j�1�si 1A 
i = 0:Thus, a parity 
he
k matrix of G(L; g(X)) 
an be written asH = 0BBBB� gtg(
0)�1 � � � gtg(
n�1)�1(gt�1 + gt
0)g(
0)�1 � � � (gt�1 + gt
n�1)g(
n�1)�1... . . . ...�Ptj=1 gj
j�10 � g(
0)�1 � � � �Ptj=1 gj
j�1n�1� g(
n�1)�11CCCCA = XYZwhereX = 0BBB� gt 0 0 � � � 0gt�1 gt 0 � � � 0... ... ... . . . ...g1 g2 g3 � � � gt1CCCA ; Y = 0BBB� 1 1 � � � 1
0 
1 � � � 
n�1... ... . . . ...
t�10 
t�11 � � � 
t�1n�11CCCA ; and
Z = 0BBBB� 1g(
0) 1g(
1) . . . 1g(
n�1)1CCCCAand therefore we have 
 2 G(L; g(X)); i� H
T = 0: (4)The entries of the matrix H are elements of the extension �eld F2m over F2 . Ifwe interpret F2m as m dimensional ve
tor spa
e over F2 , we 
an write H as amatrix over F2 of dimension mt� n.The rows of matrix H generate a ve
tor spa
e V whi
h is a subspa
e of Fn2 .From (4) it follows that the Goppa 
ode is a ve
tor spa
e whi
h is dual to V .Therefore we obtain a generator matrix G of a Goppa 
ode by 
omputing thebasis of the ve
tor spa
e dual to V . The rows of G are these basis ve
tors.Sin
e H is amt�nmatrix, the matrix G has dimension n�k, with k � n�mt.Thus, it de�nes a (n; k) Goppa 
ode, where k � n�mt.
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hmidt: The M
Elie
e Cryptosystem 112.2 The Minimum Distan
e of Irredu
ible Binary GoppaCodesIn this se
tion we will determine the minimum distan
e of an irredu
ible binaryGoppa 
ode.Let G(L; g(X)) be an irredu
ible binary Goppa 
ode with L = (
0; : : : ; 
n�1).Let 
 = (
0; : : : ; 
n�1) 2 G(L; g(X)) be a 
odeword and T
 = fi : 
i = 1g. Thenwe de�ne �
(X) = Yj2T
(X � 
j) 2 F2m [X ℄:The derivative of �
(X) is�0
(X) = Xi2T
 Yj2T
nfig(X � 
j):From (3) it follows �
(X)S
(X) � �0
(X) mod g(X): (5)Sin
e g(
i) 6= 0 for all 0 � i < n, we have g
d(�
(X); g(X)) = 1. Therefore,�
(X) is invertible modulo g(X) and we have�0
(X)�
(X) � S
(X) mod g(X):It follows that8
 2 Fn2 : 
 2 G(L; g(X)), �0
(X) � 0 mod g(X):The map F2m �! F2m , x 7! x2 is the Frobenius automorphism on F2m , thereforeevery element y 2 F2m has a unique square root.The Frobenius mapF2m [X ℄ �! F2m [X ℄; f(X) = nXi=0 fiX i 7! (f(X))2 = nXi=0 f2i X2iis a inje
tive, but not surje
tive, ring homomorphism. Its image is F2m [X2℄, aset of polynomials, whi
h are perfe
t squares of the ring F2m [X ℄.The polynomial �0
(X) =Pni=1 i�iX i�1 is a perfe
t square, be
ause in F2mwe have i�iX i�1 = 0 for ea
h even i. Sin
e g(X) is irredu
ible, we have8
 2 Fn2 : 
 2 G(L; g(X)), �0
(X) � 0 mod g2(X):Thus, for any 
odeword 
 2 G(L; g(X))nf0g we havewt(
) = deg�
(X) � 1 + deg�0
(X) � 2 deg g(X) + 1:
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Elie
e Cryptosystem 122.3 Error Corre
tion for Irredu
ible Binary Goppa CodesAs mentioned above, the minimum distan
e of a Goppa 
ode G whi
h is gener-ated by an irredu
ible polynomial of degree t is at least 2t+ 1. Therefore, it isalways possible to 
orre
t up to t errors. We now will des
ribe su
h an error 
or-re
tion algorithm whi
h 
orre
ts up to t errors in the 
ase of irredu
ible binaryGoppa 
ode G(L,g(X)). The error 
orre
tion of non-binary or non-irredu
ibleGoppa 
odes is slightly di�erent and 
an be found in [36, 23℄.Assume m 2 G(L; g(X)) is a 
odeword, e 2 Fn2 with wt(e) � t is an errorve
tor, and 
 =m� e:Given 
, we want to 
ompute e and m.Note that sin
em is a 
odeword, we have Sm(X) � 0 mod g(X) and there-fore S
(X) � Se(X) mod g(X):First, we de�ne the error lo
ator polynomial �e(X). For Te = fi : ei = 1g,we set �e(X) = Yj2Te(X � 
j) 2 F2m [X ℄:From (3), it follows �e(X)Se(X) � �0e(X) mod g(X): (6)We split �e(X) in squares and non-squares. Then we have�e(X) = �2(X) +X�2(X):Sin
e the 
hara
teristi
 of the �eld is 2, we have �0e(X) = �2(X). Thus equa-tion (6) 
an be rewritten as follows�2(X)(XSe(X) + 1) � �2(X)Se(X) mod g(X) (7)We 
an assume that e is not a 
odeword, thus Se(X) 6� 0 mod g(X). Therefore,there exists an inverse of Se(X) modulo g(X). We set T (X) = S�1e (X), andmultiply equation (7) by T (X). Then we obtain�2(X)(X + T (X)) � �2(X) mod g(X) (8)As mentioned in the last se
tion, ea
h element of F2mt has a unique square root.So let �(X) 2 F2m [X ℄ be the unique square root of the polynomial T (X) +X ,i.e. �(X)�(X) � T (X) +X mod g(X): Taking the square root of equation (8)we obtain �(X)�(X) � �(X) mod g(X): (9)In order to solve the last equation for known �(X) and g(X), we have to deter-mine �(X) and �(X) of least degree. By assumption we have deg(�e(X)) � t.It follows that deg(�(X)) � bt=2
 and deg(�(X)) � b(t � 1)=2
. This yields
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h 
an be found by applying the ex-tended Eu
lidean algorithm. We re
all that this algorithm may be used to
ompute polynomials �k(X) + �k(X)�k(X) � 0 mod g(X) in ea
h step withdeg(�k(X)) = deg(g(X)) � deg(�k�1(X)): This last formula presents the rela-tion between the degrees of � and �: After ea
h step, the degree of � in
reasesas the degree of � de
reases. Using this, one 
an see that there is a unique pointin the 
omputation of the Eu
lidean algorithm, where the degree of both poly-nomials is below the respe
tive bound. More pre
isely, we run the algorithmuntil deg(�k(X)) drops below b(t+ 1)=2
 for the �rst time and getdeg�k(X) � b(t+ 1)=2
 � 1 � bt=2
.In this round of the algorithm the following holds:deg �k(X) = deg(�k(X)) = deg(g(X))� deg(�k�1(X))� t� b(t+ 1)=2
 = b(t� 1)=2
.Now, we set �(X) = �k(X) and �(X) = �k(X) (see algorithm 2.3.1). In[36, 34, 23℄, it is shown in more detail that they ful�ll equation (9) and areunique.Finally, the 
omputation of zeroes for �e(X) = �2(X) + X�2(X) leads tove
tors e and m. We present the 
omplete algorithm on the following page.Now, we analyze the runtime of the presented error 
orre
tion algorihm. To
ompute the syndrome S
(X) employing the 
he
k matrix H , we need at most(n � k)n binary operations. To 
ompute T (X), we employ the extended Eu-
lidean algorithm. This takes O �t2m2� binary operations, as the 
omputationsare modulo g(X), a polynomial of degree t and 
oeÆ
ients of size m. Com-puting the sqare root of T (X) +X takes O �t2m2� operation sin
e it is a linearmapping on F2m [X ℄ =g(X). The subsequently employed variant of the extendedEu
lidean algorithm takes O �t2m2� binary operations, too. These steps are all
omparatively easy in 
omparison to the last step of the algorithm, whi
h is to�nd all roots of the error lo
ator polynomial. This last step 
an be performed inn(tm2+ tm) binary operations, thus the whole error 
orre
tion algorithm needsO �n � t �m2�binary operations, as mt � (n� k).3 Atta
ks on the Private KeyIn the following se
tions we present several atta
ks on the M
Elie
e PKC. Inthis se
tion we view atta
ks that aim to get the private key from the publi
key. We will see that not every 
lass of linear 
odes is a se
ure 
hoi
e for theM
Elie
e 
ryptosystem.
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Algorithm 2.3.1 Error Corre
tion of Binary Irredu
ible Goppa CodesInput: A binary irredu
ible Goppa 
ode G(L; g(X)), a ve
tor 
 =m� e,where m is a 
odeword and e is an error ve
tor.Output: The message m and the error ve
tor e./* Compute the syndrome of 
 */S
(X) =Pn�1i=0 
iX�
i mod g(X) (or use the parity 
he
k matrix H)if S
(X) � 0 mod g(X) then/* there is no error, 
 is a 
odeword */return(
, 0)else/* there are errors, 
 is not a 
odeword */T (X) � S�1
 (X) mod g(X)�(X) �pT (X) +X mod g(X)/* extended Eu
lidean algorithm */i = 0; r�1(X) = ��1(X) = g(X); r0(X) = �0(X) = �(X); ��1(X) = 0;�0(X) = 1while deg(ri(X)) � b(t+ 1)=2
 doi = i+ 1Determine qi(X) and ri(X), s.t. ri(X) = ri�2(X)� qi(X)ri�1(X)and deg(ri(X)) < deg(ri�1(X))�i(X) = �i�2(X) + qi(X)�i�1(X)�i(X) = ri(X)�(X) = 
2((�i(X))2 +X(�i(X))2) with 
 2 F2m , s.t. �(X) is moni
/* Determination of zeroes of �e(X) */for i = 0 to n� 1 doif �(
i) = 0 thenei = 1elseei = 0m = 
� ereturn(m; e)
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e of S, P and MSuppose, the set L whi
h was used to generate the se
ret Goppa 
ode for somepubli
 key of the M
Elie
e PKC is known. This is true for normal appli
ations,and if P is se
ret, then L may be revealed without se
urity problems.Suppose that g is unknown. Let H0 be the systemati
 dual matrix of SG0 =G. Assume further, that an atta
ker is able to re
over P and M su
h thatM�1H0P�1 = H, where H = XYZ has the form given in se
tion 2 (representedover F2 ). Then he 
an 
ompute g in the following way: The matrix gtZ iswritten in in the �rst m rows of H. The matrix Y is determined by L. Thus theatta
ker 
an re
over (X=gt) by solving some linear equations. Sin
e g de�nes thesame Goppa 
ode as (g=gt), the atta
ker is now able to 
orre
t errors eÆ
iently.This breaks Niederreiter's as well as M
Elie
e's 
ryptosystem.If the matrix P is revealed, it is easy to re
over the generator polynomialfrom H0P�1 using equation (6), as S
(X) = 0 for every binary n ve
tor 
 withH0P�1
> = 0.The se
ret matrix S indeed has no 
ryptographi
 fun
tion in hiding the se
retpolynomial g. Today, there is no way to re
over H with the knowledge of S�1Gonly.For the se
urity of the M
Elie
e PKC it is absolutely 
ru
ial to keep Mse
ret. The knowledge of M�1H0 = HP is suÆ
ient to re
over g. We mayinterpret M�1H0 to be a matrix over Fqm . As we will see in the following, thisallows an eÆ
ient 
omputation of g and P.3.2 Atta
k on the original Niederreiter PKCNiederreiter proposed his 
ryptosystem originally using generalized Reed-Solo-mon (GRS) 
odes. In 1992 V.M. Sidelnikov and S.O. Shestakov proposed aatta
k on Niederreiter's 
ryptosystem using GRS 
odes [47℄ whi
h reveals analternative private key in polynomial time. We 
onsider this atta
k to be worthmentionable, as Goppa 
odes are sub�eld sub
odes of GRS 
odes. Even though,the results from [47℄ do not a�e
t the se
urity of the original M
Elie
e PKC.In their atta
k, Sidelnikov and S.O. Shestakov take advantage of the fa
t,that the 
he
k matrix of GRS 
ode is of the form�H = 0BBB� z1a01 z1a11 � � � z1as1z2a02 z2a12 � � � z2as2... . . . ...zna0n zna1n � � � znasn 1CCCA 2 Fn�(s+1)q . (10)Note that the matrix X�1H = YZ from se
tion 2 is of this from, too. It follows,that the matrix �H is a 
he
k matrix of a Goppa 
ode, or to say it di�erently,ea
h Goppa 
ode is a sub�eld sub
ode of a GRS 
ode.A publi
 Niederreiter key is of the form H0 = P�HM, whereM is a non-singularmatrix and P a permutation matrix. The permutation matrix P does not 
hangethe stru
ture of �H, so we don't have to worry about P. The entries of H0 
an be
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oeÆ
ients are represented bythe i-th 
olumn of M and therefore are denoted in the same way) multiplied byzj : H0 = 0BBB� z1M�1 (a1) z1M�2 (a1) � � � z1M�s (a1)z2M�1 (a2) z2M�2 (a2) � � � z2M�s (a2)... . . . ...znM�1 (an) znM�2 (an) � � � znM�s (an) 1CCCA ,where M�i (x) =Psj=0Mjixj .Sidelnikov and Shestakov 
on
lude, that ea
h entry of the row H0i� 
an be ex-pressed by a polynomial in ai. From this observation one 
an derive a system ofpolynomial equations whose solution yields the private key. We will need the no-tation �H = Z �A with A := Z�1�H and the diagonal matrix Z := diag [z1; � � � ; zn℄.We want to assume without loss of generality that a1 = 1 and a2 = 0. Inorder to do this, we have to view the matri
es �H, M and H0 as matri
es overF := Fq [1 with 1=1 = 0, 1=0 = 1 and f (1) = fdegf for every polynomialf (x) = Pdegfj=0 fjxj over Fq . Sidelnikov and Shestakov show that for everybirational transformation (F-automorphism)� (x) = ax+ b
x+ d with a; b; 
; d 2 Fq , ad� b
 6= 0there exist z01; � � � ; z01 and a matrix M0 su
h thatH0 = 0BBB� z01� (a1)0 z01� (a1)1 � � � z01� (a1)sz02� (a2)0 z02� (a2)1 � � � z02� (a2)s... . . . ...z0n� (an)0 z0n� (an)1 � � � z0n� (an)s 1CCCA � (M0)�1M.For every three numbers a1; a2; a3 2 Fq it is possible to �nd a birational trans-formation � s.t. � (a1) = 1 = x1� (a2) = 0 = x2� (a3) =1 = x3� (aj) = xj ; j 62 f1; 2; 3g .Thus we 
an make the assumption mentioned above. Note that be
ause x3 =1we have xi 6=1 for all i 6= 3.We 
an use Algorithm 3.2.1 to re
over a (alternative) private Niederreiterkey from the publi
 key. The algorithm generates a system of polynomial equa-tions based on the assumption x1 = 1, x2 = 0, x3 = 1 and solves it. Weare going to explain the algorithm brie
y. First we have to remember theidenti�
ation of the entries of H 0 with polynomials evaluated at the aj . Thusfor 
i 2 Fs+1q , i = 1; 2 and j 2 f1; � � � ; ng, the s
alar produ
t 1zjH0j�
i is thevalue of a polynomial �i at xj , where �i is of degree at most s. De�ningJ1 = f1; s+ 2; s+ 3; � � � ; 2sg and J2 = f2; s+ 2; s+ 3; � � � ; 2sg we 
an solve
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i = 0 for i = 1; 2 we get two polynomials �1, �2 with zeroes in xs+2; � � � ; x2sand in x1, x2 respe
tively. We know that x1 = 1; x2 = 0 thusH0j�
1H0j�
2 = �1 (xj)�2 (xj) = �1 (1)�2 (1) � xj � 1xj = �1 (x3)�2 (x3) � xj � 1xj ,whi
h reveals xj for j 62 f1; 2; s+ 2; � � � ; 2sg. To determine the missing xj ,j 2 fs+ 2; � � � ; 2sg we repeat the pro
edure (introdu
ing 
3, J3, 
4 and J4) andtake into a

ount the knowledge of the already determined xj . Afterwards weperform another birational transformation �0 on the xj s.t. ai = �0 (xj) are�nite.Knowing all ai, i 2 f1; � � � ; ng we are able to re
over z2; � � � ; zs+2 assumingthat z1 = 1 . De�ning J5 := f1; 2; � � � s+ 2g and solving 
5H0J5� = 0 for 
5 2 Fs+1qwe get a polynomial s.t. Ps+2j=1 
5jzjMi� (xj) = 0 for i = 1; � � � ; s+2. Expressingthis in matrix form we get:
5(�HM)J5� = 
5(ZA)J5M = 0and 
onsequently we know that 
5(ZA)J5 = 0, whi
h gives us a linear systemwith s+1 unknowns and s+1 equations sin
e z1, A and 
5 are already known.Now we 
an determineM and in 
ontinuation the remaining zj . Algorithm 3.2.1has a running time of O �s4 + sn�. For details see [47℄.Remark 3.2.1 Algorithm 3.2.1 
an not be applied to M
Elie
e/Niederreiter
ryptosystems using Goppa 
odes. Even though for every Goppa 
ode there isa 
he
kmatrix H whi
h has the same stru
ture as the 
he
k matrix �H for GRS
odes in equation (10) (see [36℄), there is no analogous interpretation of H0 forthe Niederreiter 
ryptosystem using Goppa 
odes. We are able to view H as amatrix over F2 if we are using Goppa 
odes, whereas this doesn't work for GRS
odes. Thus we have di�erent matri
es M: M 2 F(s+1)�(s+1)2m for the GRS 
aseand M 2 Fm(s+1)�m(s+1)2 for Goppa 
odes. Thus, in the latter 
ase, H0 has noobvious stru
ture, as long as M is unknown.3.3 Weak Keys and the Support Splitting AlgorithmP. Loidreau and N. Sendrier proposed a way to identify a sub
lass of Goppa
odes, namely the ones with binary generator polynomial g 2 F2 [X ℄. If anatta
ker knows, that the se
ret generator polynomial is binary, this redu
esthe sear
h spa
e of a brute for
e atta
k on the private key [35℄. Their generalidea is to take advantage of the Support Splitting Algorithm (SSA) presentedin [44℄. The SSA 
an be used as an ora
le to de
ide whether two 
odes arepermutation equivalent as well as to determine the automorphism group of a
ode. P. Loidreau and N. Sendrier use this ability, to determine if the generatorpolynomial of a Goppa 
ode is a binary (irredu
ible) polynomial. If this is the
ase, we sear
h the spa
e of the Goppa 
odes with binary generator polynomialfor a 
ode, whi
h is equivalent to the one given by the publi
 generator matrix.
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Algorithm 3.2.1 GRSre
over [47℄Input: H0 = �h0ij� 2 Fn�(s+1)q and t, a Niederreiter Publi
 key.Output: �H,P of the 
orresponding private Niederreiter Key.J1 = f1; s+ 2; s+ 3; � � � ; 2sg; J2 = f2; s+ 2; s+ 3; � � � ; 2sg;J3 = f1; 3; 4; � � � ; s+ 1g; J4 = f2; 3; 4; � � � ; s+ 1g; J5 = f1; 2; � � � s+ 2g;for i = 1 to 4 dosolve H0Ji�
i = 0 with 
i 2 Fs+1q n 0;for j 62 J1 [ J2 do//�1j = H0j�
1; �2j = H0j�
2;bj = �1j=�2j ;for j 2 fn; 2s; � � � ; s+ 2g do�3j = Hj�
3; �4j = Hj�
4;bj = bn�4n�3n � �3j�4j ; // Note, that we already know bn.x1 = 1; x2 = 0; x3 =1;for j = 4 to n do// Determining the values of xj .xj = b3= (b3 � bj);
hoose some a 2 Fq di�ering from all xj ;for j = 1 to n do// Mapping the xj to �nite elements.aj = (a� xj)�1; Aj� = �a0j ; � � � ; asj�;solve 
5H0J5� = 0 with 
5 2 Fs+1q n 0;z1 = 1;�nd z2; � � � ; zs+2 2 Fq s.t. Ps+2j=1 
5jzjAj� = 0;for i = 0 to s dosolve AJ5�M�i = �z�1j H0ji�>j2J5 ;M = (M�0; � � � ;M�s);for j = 3 to n dozj = H0j� �M�1��0;Return a1; � � � ; an; z1; � � � ; zn;M;
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h a 
ode is found, the SSA 
an be used to re
over the permutation matrixP. There is another atta
k by Gibson [20℄, whi
h aims to re
over the matrixP, but we forbear presenting it here, as its average work fa
tor is larger than2nm(1+O(1)) binary operations [43℄.The Support Splitting Algorithm was presented to solve the problem to de-
ide whether two 
odes are permutation equivalent in (almost) polynomial time.We will explain it in the following. Our notation in the following presentationof the algorithm will di�er slightly from that used in [44℄ so as not to 
onfusethe reader of the paper with two di�erent de�nitions of a signature. The mainidea is to partition the index set of the 
ode C into small sets, whi
h are �xedunder operation of elements of Aut (C). We have to introdu
e some de�nitions�rst:De�nition 3.3.1 Let L be the set of all 
odes and let M be a arbitrary set. Afun
tion f : L � N 7! M is 
alled permutation invariant if for all (n; k) 
odesC and all permutations � on f1; � � � ; ng the equation f (C; i) = f (� (C) ; � (i))holds. A permutation invariant fun
tion f is 
alled dis
riminant for C if thereexist i; j 2 f1; � � � ; ng s.t. f (C; i) 6= f (C; j). It is further 
alled fully dis
rimi-nant for C if 8i;j2f1;��� ;ng : i 6= j ) f (C; i) 6= f (C; j)If we have two permutation equivalent 
odes C and C0 and a fully dis
riminantfun
tion for C, then we are able to name the permutation � s.t. � (C) = C0. Inorder to build a dis
riminant fun
tion for C, we employ the weight enumeratorand pun
tured 
odes :De�nition 3.3.2 Let C be an (n; k) 
ode over K . Let J be any subset off1; � � � ; ng. Then the 
ode C pun
tured in J is de�ned byCJ = fx 2 Fn jxJ = 0 and 9y2C8j 62Jxj = yjg .The weight enumerator W : L 7! NN is the fun
tion s.t. W (C)i is the numberof words of weight i in the 
ode C for all i 2 N.Example 3.3.3 The fun
tion W 0 : L � N ! NN ; (C; i) 7! W �Cfig� is permu-tation invariant. Furthermore, W 0 is dis
riminant for most binary (n; k) 
odesC. We are going to use dis
riminant fun
tions to partition the index set of a
ode. Starting with a fun
tion f dis
riminant for C, we want to 
onstru
t afun
tion g more dis
riminant for C in the sense ofjg (C; f1; � � � ; ng)j � jf (C; f1; � � � ; ng)jfor the (n; k) 
ode C. The fun
tion g is 
alled stri
tly more dis
riminant for C ifwe 
an repla
e � with > in the inequality above. We repeat this pro
ess untilwe get a fully dis
riminant fun
tion for C. The following two de�nitions willenable us to do so.
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tions. We de�nethe produ
t of f and g asf � g : L � N !M �M;(C; i) 7! (f (C; i) ; g (C; i)) ,and the dual of f as f? : L � N !M;(C; i) 7! f �C?; i� .The fun
tion f is 
alled self-dual if f = f?.It is easy to see, that f�g is more dis
riminant than f . With the de�nitionsabove we are able to des
ribe the Support Splitting Algorithm (algorithm 3.3.1).It mainly 
onsists in a while-loop in whi
h de�nitions 3.3.4 and 3.3.2 are usedto get more dis
riminant fun
tions for a given 
ode C, until a fully dis
riminantfun
tion for C is generated. After the while-loop the index set of C is partitionedin a standardized way.Algorithm 3.3.1 Support Splitting Algorithm (SSA)Input: G generator matrix of a linear (n� k) 
ode C,S : L � N !M permutation invariant dis
riminant for C.Output: P = f(Pj ; j)g1�j�n, Pj � f1; � � � ; ng, 
alled labeled partition.T a permutation invariant, dis
riminant fun
tion for C.In = f1; � � � ; ng;j = 0;T0 = S;while (a fun
tion stri
tly more dis
riminant for C than Tj exists) do
hoose L � Ti (C; In) at random;Tj+1 (C; i) = Tj (C; i)� S �Cfi2InjT (C;i)2Lg; i�� S? �Cfi2InjT (C;i)2Lg; i�;j = j + 1;T = Tj ;for j = 1 to n doif j 2 S1�i<j Pi thenPj = ;;elsePj = fi 2 InjT (C; i) = T (C; j)g;There are two main diÆ
ulties with the algorithm. The �st one is, thatit won't terminate if we are not able to generate a fully dis
riminant fun
tionfor C in the while-loop. Only then we would know, that there does not existany further re�nement of Tj . However, remark 3.3.7 will give us a termination
riterion for binary Goppa 
odes. The se
ond diÆ
ulty is to �nd a good 
hoi
efor the fun
tion S. A

ording to [35℄ and [44℄ for binary 
odes C we 
hooseS : L � N ! NN�N(C; i) 7! �W �Cfig \ �Cfig�?� ;W ��C?�fig \ ��C?�fig�?�� (11)
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tion is dis
rimi-nant in pra
ti
e. Choosing suitable 
riteria for exiting the while-loop, algorithm3.3.1 runs in time O �n3 + 2dim(C\C?)n2 log (n)� , (12)see [35℄. To see that the average running time of SSA is polynomial boundedwe need to estimate the dim �C \ C?�-term in equation (12) and the 
ost for
omputing the weight enumeratorW . The worst-
ase 
omputation 
ost ofW fora q-ary 
ode of length n and dimension k is proportional to nqk operations in Fq .However, the average 
ost of 
omputing the weight enumerator is proportionalto 2n operations [44℄. We 
ontinue with determining the dim �C \ C?�-term:Proposition 3.3.5 Let C be an (n; k) 
ode over Fq . We 
all C \ C? the hull ofC. The average dimension of the hull of C tends to a 
onstant when the size ofthe 
ode goes to in�nity. This 
onstant is equal toR = 1Xi=1 1qi + 1.The proportion of (n; k) 
odes over Fq with a hull of dimension l � 0 is asymp-toti
ally equal to Rl = Rl�1= �ql � 1� with R0 = 1Yi=0 11 + q�i .Proof. See [45℄, [44℄.As we have already mentioned SSA is unlikely to terminate in the version ofalgorithm 3.3.1. Thus we have to make some assumptions on its output if we
hoose other termination 
riteria for the while-loop, than the one given in thealgorithm. We will see, that these assumptions lead to a suitable termination
riterion, if C is a Goppa 
ode.We write P = SSA (C) if the labeled partition P = f(Pj ; j)g1�j�n is outputof SSA on input of the generator matrix of C. The nonempty Ps of the outputof SSA are 
alled the 
ells of P . Two labeled partitions P and P 0 are 
alledequivalent i� a permutation � 2 Sn exists, s.t. for all s 2 In jPsj = j P 0�(s) j ; wewrite P � P 0. The fundamental property of SSA is thatC = � (C0)) P � P 0 ,where � 2 Sn. Thus the output of SSA on input of two permutation equivalent
odes is identi
al and the orbits of the elements of the 
ode support under thea
tion of Aut (C) 
onstitute the �nest obtainable partition.Assumption 1 If SSA on input G and G0 returns P ; T and P 0; T 0 respe
tively,then (T (hGi ;N) = T (hG0i ;N) ^ P � P 0) ) hGi = � (hG0i) ,
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ti
e, if the number of 
ells is larger thana few units. From this observation the following assumption about the behaviorof SSA is derived:Assumption 2 On input of the generator matrix of C the SSA returns a labeledpartition whose 
ells are the orbits of the elements of the 
ode support under thea
tion of Aut (C).Assumption 2 seems to hold for (binary) 
odes of length � 50 and is basedon experiments by P. Loidreau and N. Sendrier [35℄. Now, if we know Aut (C),then we 
an easily determine for every for C dis
riminant fun
tion T whetherthere exists a stri
tly more dis
riminant fun
tion for C, or not. Fortunately we
an determine Aut (G) for a Goppa 
ode G in some 
ases:Theorem 3.3.6 With the notation of remark 2.1.2. Let G (L; g) be a binary(n; k) Goppa 
ode de�ned by a generator polynomial g 2 Fqm [X ℄ with 
oeÆ
ientsfrom a sub�eld Fqs of Fqm . If n = qm, then AUT (G) 
ontains the automorphism� : Fqm ! Fqm ; x 7! x2s .Note that the elements x 2 Fqm are the 
ode support and 
orespond to positionswhi
h are determined by L.Proof. The proof is derived from a theorem by Moreno [36℄, [35℄.Here we will only 
onsider s = 1, i.e. only binary Goppa 
odes with binarygenerator polynomial. In su
h 
ases, the group generated by the Frobenius �eldautomorphism is in general exa
tly AUT (G) [35℄. Based on this theorem andthe assumptions above, we get the following termination 
riterion for algorithm3.3.1:Remark 3.3.7 Let G be a binary Goppa 
ode over Fqm with binary generatorpolynomial. Assume, that the group generated by the Frobenius �eld automor-phism over Fqm is exa
tly Aut (G). Let PAut be the set of di�erent orbits of the
ode support under the a
tion of Aut (G). Then the 
ondition(a fun
tion stri
tly more dis
riminant for G than Tj exists)in algorithm 3.3.1 is equivalent tojTj (G;N) j < ��PAut�� .Further, the running time of algorithm 3.3.1 is given by equation (12).Let's return to the original problem. We do know the publi
 M
Elie
e key(G; t) and want to re
onstru
t the private key. If assumptions 1 and 2 hold,we 
an identify a weak key (i.e. a M
Elie
e-Instan
e, generated with a binary
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omparing the 
ardinalities of SSA (hGi) with the
ardinalities of the di�erent orbits of the elements of the 
ode support underthe a
tion of Aut (hGi): If the SSA does not terminate or returns a fun
tion Tsu
h that jT (C;N)j 6� ��PAut�� ,then we assume, that hGi = G does not have a binary generator polynomial.Otherwise, we identify a \weak key ", i.e. we assume, that G has a binarygenerator polynomial.On
e a weak key is identi�ed, we 
an determine the binary Goppa polynomialused to generate the publi
 key G by brute for
e. We 
he
k ifSSA (hGi) � SSA (G(L; g(X)))for all (irredu
ible) binary polynomials g of degree t, where G(L; g(X)) de-notes the Goppa 
ode de�ned by the set L and g (
ompare se
tion 2). Afterhaving identi�ed the generator polynomial of G, one 
an determine the se
retpermutation matrix P. In order to do so, we have to pi
k a i 2 f1; � � � ; ng s.t.AUT �Gfig� = f1g and a j out of the orbit of i under Aut (G). Then Gfig andhGifjg are equivalent and we get the permutation by applying SSA to both. Thisprodu
es partitionings 
ontaining only 
ells of 
ardinality one (under assump-tion 2) and the mat
hes between the 
ells provide the permutation. The authorsof [35℄ 
laim that most i serve the last 
ondition. The number of irredu
iblepolynomials of degree 50 is approximately 244. Thus the average runtime of theatta
k on weak keys for M
Elie
e parameters n = 1024, t = 50 is�244 + 1�O �n3 + 2Rn2 log (n)� � 275,where R is given in proposition 3.3.5. We 
on
lude, that the 
hoi
e of n = 1024,t = 50 for M
Elie
e does not rea
h the desired level of se
urity, if we want touse binary generator polynomials.There is a possibility to speed up this atta
k by a fa
tor (log (n))3 if we �rst
he
k the idempotent sub
odes against ea
h other in the brute for
e part of theatta
k, instead of 
omparing the Goppa 
odes themselves.De�nition 3.3.8 Let G be a Goppa 
ode, then a word a 2 G is 
alled idempo-tent if a = �a
0 ; � � � ; a
n�1� = �a��1(
0); � � � ; a��1(
n�1)� .The set of all idempotents of G is a linear sub
ode of G and is 
alled the idem-potent sub
ode IG of G.The sub
ode IG may be mapped to a linear 
ode I of length equal to thenumber of di�erent orbits of F2m under � [35℄. The 
ode I has the same di-mension as IG and its length is shorter by a fa
tor 
lose to m. We 
on
ludethat the use of the idempotent sub
ode provides a speedup of the atta
k 
loseto the fa
tor m3, thus the 
hoi
e of a binary generator polynomial for the se
retGoppa 
odes does not provide suÆ
ient se
urity, even for parameter sets withn > 1024.
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k may be generalized to dete
t Goppa 
odes witha generator polynomial over any sub�eld of F2m but the 
lass dete
ted thisway is mu
h too big to perform an exhaustive sear
h. Further, the number ofpolynomials 
lassi�ed by this property is mu
h too small to provide an e�e
tiveatta
k against the M
Elie
e 
ryptosystem.4 Ciphertext Only Atta
ksIn this se
tion, we will �rst present algrorithms for solving the general de
od-ing problem (see Problem 1.2.3). These algorithms yield to di�erent atta
ksagainst 
ryptosystems based on linear error-
orre
ting 
odes. On input of a
ode generator matrix G (a part of the publi
 key) and a 
iper-text 
, these at-ta
ks 
ompute the plain text 
orresponding to the 
ipher text 
. Although theseatta
ks require exponential time, they are faster than the brute for
e algorithm.At the end of the se
tion, we will des
ribe an atta
k by Bri
kell and Odlyzko[6℄ based on latti
e redu
tion and show why this atta
k does not work withM
Elie
e or Niederreiter 
ryptosystems based on binary Goppa 
odes.4.1 Generalized Information-Set-De
oding Atta
kThis atta
k was proposed by M
Elie
e in his original paper [37℄. Lee and Bri
kellsystematized and generalized it in [30℄. It solves the general de
oding problemassuming the knowledge of an upper bound for the distan
e to the next 
odeword.We will begin by presenting the idea of the atta
k. Assume we are given agenerator matrix G of a linear error-
orre
ting 
ode and a 
ipher text 
 =mG�ewhere e is the error ve
tor of weight t. Then, we randomly 
hoose k 
olumns ofG and 
. If there is no error in the 
hosen 
olumns of 
 and the k � k matrixbuilded from k 
olumns of G is invertible, then we 
an easy determine m.Now we will give a detailed des
ription of the atta
k. It pro
eeds as follows.Let I � f0; : : : ; n � 1g with jIj = k = dimG. As in se
tion 1.2 we denote byGI , 
I , and eI the k 
olumns pi
ked from G, 
, and e, respe
tively. Then thefollowing relationship is true 
I =mGI � eI :If GI is non-singular and eI = 0, thenm = 
IG�1I :If GI is non-singular and wt(eI) is small, then m 
an be re
overed by guessingeI and 
he
king whether wt((
I � eI)G�1I G� 
) = t:We will estimate the work fa
tor of this atta
k (see Algorithm GISD). Thenumber of sets I, su
h that there are exa
tly i errors in ve
tor 
I is �ti��n�tk�i�.



D. Engelbert, R. Overbe
k and A. S
hmidt: The M
Elie
e Cryptosystem 25Algorithm 4.1.1 GISDInput: n� k generator matrix G, a 
ipher text 
 =mG� e, where m is theplain-text and e is the error ve
tor of weight t, a positive integer j � t.Output: The plain-text mwhile true doChoose randomly I � f0; : : : ; n� 1g, with jIj = k.Q1 = G�1I ; Q2 = Q1Gz = 
� 
IQ2for i = 0 to j dofor all eI with wt(eI) = i doif wt(z � eIQ2) = t thenreturn((
I � eI)Q1)The number of all sets I with jIj = k is �nk�. Therefore, the expe
ted numberfor 
hoosing the set I su
h that there are at most j errors in ve
tor 
I isTj = �nk�Pji=0 �ti��n�tk�i� :The number of error ve
tors eI with wt(eI) � j isNj = jXi=0 �ki�:Therefore the expe
ted work fa
tor of the atta
k for given j and (n; k) Goppa
ode with minimum distan
e 2t+ 1 isWj = �Tj(k3 +Njk);where � is a small 
onstant.In [30℄ the authors propose to use j = 2 to minimize the Wj .4.2 Finding-Low-Weight-Codeword Atta
ksIn this se
tion, we will present three algorithms whi
h solve the problem of�nding weights (see Problem 1.2.4). These algorithms 
an be used to breakM
Elie
e or Niederreiter 
ryptosystems in the following way. Assume we knowa generator matrix G of a linear error-
orre
ting 
ode with minimum distan
e tand a 
ipher text 
 = mG� e, where wt(e) < t=2. We 
ompute the 
odewordwith the minimum weight in a new 
ode generated by matrix�G
� :Sin
e this 
odeword is e, this atta
k 
an be used to re
over the plain text mfrom the given 
ipher text 
.
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ode C given by a generator matrix G. The algorithms �rst sear
hfor 
odewords of small weight in a restri
ted 
ode generated by GS where S is arandom subset of f0; : : : ; n� 1g. Then, they expand these 
odewords to 
ode-words in C and 
he
k whether the 
odewords in C have the desired weight. Thealgorithms di�er in the way of 
hoosing for set S and the strategy of sear
hingfor 
odewords of small weight in the restri
ted 
ode.Before we des
ribe the algorithms, we will will give some ne
essary notationsand de�nitions.Let N = f0; : : : ; n� 1g be the set of all 
oordinates. As in the last se
tion,we will use the set I � N with jIj = k = dimG.By G = (V;W)I , we will denote the de
omposition of G in two matri
es Vand W, su
h that V = (Gi)i2I and W = (Gi)i=2I , where Gi is the i-th 
olumn ofG. Now, we will introdu
e the information set whi
h allows us to redu
e the
omputation 
ost in the algorithms we will present below.De�nition 4.2.1 Let I � N , su
h that jIj = k. Then I is an information setfor the 
ode C i� there is a generator matrix G for C su
h that G = (Idk;Z)I .The following statement for information sets is true.Theorem 4.2.2 Let I be an information set and G = (Idk;Z)I the 
orrespond-ing systemati
 generator matrix. Then I 0 = (Inf�g) [ f�g is an informationset i� Z�;� = 1Proof. Sin
e G = (Idk;Z)I , we haveG� = Z�;� + Xi2Inf�gZi;�Gi:Columns indexed by I are linearly independent, therefore G� and (Gi)i2Inf�gare linearly independent i� Z�;� = 1.Now we will des
ribe the algorithms by Leon, Stern, and Canteaut and Chabaud.4.2.1 LeonIn [32℄, J. S. Leon proposed a probabilisti
 algorithm for 
omputing mini-mum weights of large linear error-
orre
ting 
odes. This algorithm 
an alsobe adapted for 
omputing 
odewords of minimum weight in a linear 
ode.In this paper, we will present a version of the algorithm whi
h is slightlydi�erent from version presented by Leon in [32℄. This version was presented byChabaud in [10℄.The input of the algorithm is a generator matrix G, the weight t, and twoadditional integers p and l whi
h 
ontrol the runtime and the su

ess probabilityof the algorithm. The algorithm returns a 
odeword of weight t or fails. Thealgorithm exe
utes the following steps.
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hoose an information set I and apply a Gaussian elimina-tion in order to obtain a systemati
 generator matrix G� = (Idk;Z)I .Step 2: Randomly 
hoose a set L � NnI 
onsisting of l elements.Step 3: For ea
h linear 
ombination A of p or fewer rows of matrix G�I[L
ompute wt(AI[L).Step 4: If wt(AI[L) � p 
he
k whether the same linear 
ombination appliedto matrix G� has weight t. If that is the 
ase, then return the last linear
ombination. If there is no linear 
ombination whi
h ful�lls the above
ondition, then the algorithm fails.Next, we will analyze the algorithm. Thereby we assume that zeros and ones inthe 
odewords are distributed almost uniformly.At �rst, we will determine the su

ess probability. It depends on favorable
hoi
es of I and L. Assume we have a 
odeword e with wt(e) = t. Fix p; l 2 Z,then the following 
onditions lead to favorable 
hoi
es of I and L:I � N ; jIj = k; L 2 NnI; jLj = l; wt(eI[L) � p:Therefore, Leon's algorithm su

eeds with probability:Pr[algorithm su

eeds℄ = pXj=1 �tj�� n�tk+l�j�� nk+l� :Next, we will estimate the expe
ted work fa
tor of the algorithm.� The Gaussian elimination performed in step 1 requires on the averagek22 (n� k+12 ) bit operations.� Step 3 requiresPpj=1 �kj�(j � 1) additions of l-bit words.� Sin
e in step 4, 
ondition wt(AI[L) � p is true approximatelyPpj=1 �kj�Pp�ji=0 (li)2ltimes. The algorithm requiresPpj=1 �kj�(j � 1)Pp�ji=0 (li)2l additions of n-bitwords.Therefore, the expe
ted work fa
tor of Leon's atta
k against M
Elie
e 
ryp-tosystem is� nk + l� k22 (n� k+12 ) +Ppj=1 �kj�(j � 1)(l + n2l Pp�ji=0 �li�)Ppj=1 �tj�� n�tk+l�j� . (13)To minimize the work fa
tor, in [10℄ the parameters of Leon's atta
k are 
hosento be p = 3 and l � k + log2(n).
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Algorithm 4.2.1 Leon-LWCWInput: k � n generator matrix G, a positive integers t, p, and l.Output: A 
odeword of weight tN = f0; : : : ; n� 1gwhile true do/* Step 1 */I = ;; P = ;for i = 1 to k doRandomly 
hoose r 2 NnI; I = I [ frgRandomly 
hoose 
 2 f1; : : : ; kgnP su
h that Gr;
 = 1; P = P [ f
g/* Eliminate all 1's in 
olumn 
 */for j = 1 to k doif j 6= r and Gj;
 = 1 thenGj = Gj � Gr, where Gx is the x-th row of G/* now we have G = (Idk;Z)I *//* Step 2 */Randomly 
hoose L � NnI su
h that jLj = l/* Steps 3 and 4 */for all linear 
ombinations A of p rows of GI[L doif wt(AI[L) � p thenConstru
t 
 from G by taking the same rows as in Aif wt(
)=t thenreturn(
)
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tion, we will present a slightly modi�ed algorithm from [48℄. We applyour algorithm to a generator matrix of a 
ode instead of a parity 
he
k matrixas presented by Stern.On input of a generator matrix G and three integers t, p and l the algorithmreturns a 
odeword of length t or fails. The additional parameters p and lallow us to 
ontrol the runtime and the su

ess probability of the algorithm.Thus, knowing that there exist a 
odeword, we 
an repeat the algorithm untilit su

eeds.The algorithm is based on the following idea. It randomly splits G into twosub-matri
es whi
h 
onsist of rows of matrix G. In ea
h matrix, the algorithm
omputes all linear 
ombinations of p rows and 
he
ks whether 
ertain parts ofthese linear 
ombinations are equal. If they are equal, then the algorithm 
he
kswhether the weight of remaining parts is equal t. In this 
ase the algorithmsu

eeds.The algorithm performs the following �ve steps:Step 1: Randomly 
hoose an information set I and apply a Gaussian elimina-tion in order to obtain a systemati
 generator matrix G� = (Idk;Z)I .Step 2: Randomly spit I into two subsets I1 and I2. Ea
h element of I isadded either to I1 or to I2 with probability 1=2. This 
auses a splittingof the rows of Z in ZI1� and ZI2�Step 3: Randomly 
hoose a set L � NnI 
onsisting of l elements.Step 4: For ea
h linear 
ombinationA (resp. B) of p rows of matrix ZI1� (resp.ZI2�) 
ompute AL (resp. BL).Step 5: For ea
h pair (A;B) withAL = BL 
he
k whether wt(A+B) = t�2p.If that is the 
ase, then return ve
tor e 
onsisting of a linear 
ombinationof rows of G�, where the same rows as in A +B are taken. If there is nopair whi
h ful�lls the above 
onditions, then the algorithm fails.We will analyze the algorithm. At �rst, we will determine the probability itsu

eeds. It depends on 
hoi
es of I, I1, I2, and L. Assume we have a 
odeworde with wt(e) = t. Fix p; l 2 Z, then we have the following 
onditions:1. jIj = k and wt(eI) = 2p,2. I1 � I, wt(eI1) = p, and I2 = InI1,3. L 2 NnI, jLj = l, wt(eNnI) = t� 2p, and wt(eL) = 0.These 
onditions impli
ate the probabilities of 
hoosing su
h sets I, I1, I2, and
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h yield to the given 
odeword e.Pr[of 
hoosing a favorable I℄ = � t2p�� k�tk�2p��nk�Pr[of 
hoosing a favorable I1℄ = �2pp �4pPr[of 
hoosing a favorable L℄ = �n�k�t+2pl ��n�kl �The probability of su

ess of Stern's algorithm is the produ
t of the aboveprobabilities. Thus, we havePr[the algorithm su

eeds℄ =Pr[of 
hoosing a favorable I℄�Pr[of 
hoosing a favorable I1℄�Pr[of 
hoosing a favorable L℄: (14)Next, we will estimate the expe
ted work fa
tor.� The Gaussian elimination performed in step 1 requires on the averagek22 (n� k+12 ) bit operations.� Step 4 requires on the average 2lp�k=2p � bit operations.� In step 5 we assume that the distribution of values of AL (resp. BL) isroughly uniform. Then, any bit ve
tor of dimension l is hit by approxi-mately �k=2p �=2l elements of A (resp. B). It follows, that step 5 requiresapproximately 2(n� k)�k=2p �2=2l bit operations.Thus, Stern's algorithm requires on average2lpk2(n� k)(n� k + 12 )�k=2p �3=2l (15)bit operations.By 
ombining the results of (14) and (15), we 
on
lude that the expe
tedwork fa
tor of Stern's atta
k against M
Elie
e 
ryptosystem is4p+1lpk2(n� k)(n� k+12 )�k=2p �3�n�kl ��nk�2l+1�2pp �� t2p�� k�tk�2p��n�k�t+2pl � (16)4.2.3 Canteaut and ChabaudAs mentioned above, Stern's algorithm has to be repeated very often in orderto de
rypt su

essfully. Ea
h repetition performs in the �rst step a Gaussian
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Algorithm 4.2.2 Stern-LWCWInput: k � n generator matrix G, a positive integers t, p, and l.Output: A 
odeword of weight tN = f0; : : : ; n� 1gwhile true do/* Step 1 */I = ;; P = ;for i = 1 to k doRandomly 
hoose r 2 NnI; I = I [ frgRandomly 
hoose 
 2 f1; : : : ; kgnP su
h that Gr;
 = 1; P = P [ f
g/* Eliminate all 1's in 
olumn 
 */for j = 1 to k doif j 6= r and Gj;
 = 1 thenGj = Gj � Gr, where Gx is the x-th row of G/* now we have G = (Idk;Z)I *//* Step 2 */Randomly split I into I1 and I2/* Step 3 */Randomly 
hoose L � NnI su
h that jLj = l/* Steps 4 and 5 */for all linear 
ombinations A of p rows of ZI1 dostore (AL; A; index of rows) in a hash table Tfor all linear 
ombinations B of p rows of ZI2 doif there exists (BL; A; index of rows) 2 T andwt((A+B)Nn(I[L)) = t� 2p thenConstru
t 
 from G by taking the same rows as in A+Breturn(
)
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h is very time 
onsuming. In [8℄ the authors suggest anotherstrategy for this step. Based on theorem 4.2.2, they suggest to 
hoose a newinformation set not randomly but by modifying only one element in the old one.The 
omplexity of this new step is approximately k(n� k)=2 binary operationsinstead of k2(n� k+12 ) in Stern's algorithm.The pre
ise analyze of the algorithm CC-LWCW 
an be found in [8, 9℄.Here we will present only the results. The algorithm is analyzed via modelingby a Markov 
hain. For this purpose we need a random variable Xi whi
hrepresent the ith iteration of the algorithm and 
orresponds to the numberof non-zero bits of 
ipher text 
 in I. Xi takes one of the values of the setE = (f1; : : : ; tgnf2pg)[ f(2p)S ; (2p)F g The set of su

ess states is S = f(2p)Sg.The set of failure states is F = EnSTheorem 4.2.3 The following results for the algorithm CC-LWCW are true:1. The average number of elementary operations performed in ea
h while-iteration is
p;l = 2pl��k=2p ��+2p(n�k�l)��k=2p ��22l +S�p��k=2p ��+ 2l�+k(n� k)2where S is the size of a 
omputer word (= 32 or 64).2. Let �0(u) = Pr[X0 = u℄, Pu;v = Pr[Xi = v=Xi�1 = u℄, Q = (Pu;v)u;v2F ,and R = (I�Q)�1. Then the expe
tation of the number of while-iterationsN is E(N) = Xu2F �0(u)Xv2F Ru;v3. Suppose the number of 
odewords of weight t is At (Note, that At = 1 inour atta
k). Then the overall work fa
tor of the algorithm isWp;l = 
p;lE(N)At (17)The exa
t values of the entries of the matrix P and a more detailed analysismay be found e.g. in [9℄. To get a approximate work fa
tor, one 
an repla
e thek2 �n� k+12 �-term in equation (16) by k(n� k)=2.4.3 Statisti
al De
odingThis atta
k was presented by A Kh. Al Jabri in [25℄. It is based on the ideathat ve
tors from the dual spa
e of a binary 
ode whi
h are not orthogonalto the 
iphertext reveal some information on the error positions. This atta
kneeds an algorithm whi
h �nds a suÆ
ient number of ve
tors of the dual 
ode of
ertain weight. It is not 
lear what the running time of su
h a sear
h would be,sin
e the problem of �nding the desired set of ve
tors is 
onne
ted to Problem
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e Cryptosystem 33Algorithm 4.2.3 CC-LWCWInput: k � n generator matrix G, a positive integers t, p, and l.Output: A 
odeword of weight tN = f0; : : : ; n� 1g/* Step 1 */I = ;; P = ;for i = 1 to k doRandomly 
hoose r 2 NnI; I = I [ frgRandomly 
hoose 
 2 f1; : : : ; kgnP su
h that Gr;
 = 1; P = P [ f
g/* Eliminate all 1's in 
olumn 
 */for j = 1 to k doif j 6= r and Gj;
 = 1 thenGj = Gj � Gr, where Gx is the x-th row of G/* now we have G = (Idk;Z)I */while true do/* Step 2 */Randomly split I into I1 and I2 with jI1j = bjIj=2
/* Step 3 */Randomly 
hoose L � NnI su
h that jLj = l/* Steps 4 and 5 */for all linear 
ombinations A of p rows of ZI1 dostore (AL; A; index of rows) in a hash table Tfor all linear 
ombinations B of p rows of ZI2 doif there exists (BL; A; index of rows) 2 T andwt((A+B)Nn(I[L)) = t� 2p thenConstru
t 
 from G by taking the same rows as in A+Breturn(
)/* New step 1 */Randomly 
hoose � 2 IFind unique r su
h that Gr;� = 1Randomly 
hoose � 2 NnI, su
h that Zr;� = 1I = (Inf�g) [ f�g/* Update Z appropriate to new I */for i = 1 to k doif r 6= i and Gi;� = 1 thenGi = Gi � Gr, where Gx is the x-th row of G
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e of the dual 
ode (see e.g. [12℄).Let Hw be a set of ve
tors of weight w of the dual spa
e of the (n; k; 2t+ 1)linear binary 
ode G with generator Matrix G. Let y be the sum of a 
odeworduG 2 G and an error ve
tor e with weight at most t. A Jh. Al Jabri points out,that for randomly generated 
odes the probability that a value of 1 appears inthe i-th position of h 2 Hw with yhT = 1 depends on i being an erroneousposition in the ve
tor y. Let p be the probability that hi = 1 and i is anerroneous position, and q be the probability that hi = 1 and i is a non-erroneousposition. Then we havep = Pm�tm odd � n�tw�m�� t�1m�1�Pm�tm odd � tm�� n�tw�m� , q = Pm�tm odd � n�t�1w�m�1�� tm�Pm�tm odd � tm�� n�tw�m�for all h satisfying that yhT = 1.The idea for statisti
al de
oding is quite similar to the one of iterative de
od-ing, see [14℄. It 
onsists in estimating the probability that hi = 1 and yhT = 1for ea
h position i 
onsidering di�erent ve
tors h. Unlike at iterative de
odingwe do not determine a single error position, but try to determine an informa-tion set of non-error positions. If for example p > q, then we assume that i isa non-error position if the relative frequen
y estimate is lower then a 
ertainbound. On
e we have found a non-erroneous information set by modifying thebound, we try to 
orre
t the errors.We 
an re
over u using algorithm 4.3.1 if Hw is properly 
hosen. Notethat for i 2 f1; � � � ; ng an (non-)error position the value vi=v+y with v+y :=Ph2Hw �yhT mod 2� is the relative frequen
y estimate for p (q respe
tively).The mean value of vi is pv+y , and its varian
e is �2 = p(p � 1)v+y . The sets I1and I2 are introdu
ed to 
over the 
ases where p < q or p > q.Algorithm 4.3.1 StatDe
Input: Hw, y.Output: u, the information ve
tor.v =Ph2Hw �yh> mod 2�h 2 Zn.
hoose I1 = fpositions of the k largest entries of vg s.t. G�I1 is invertible.
hoose I2 = fpositions of the k smalles entries of vg s.t. G�I2 is invertible.u1 = yI1G�1�I1u2 = yI2G�1�I2if weight(u1G� y) � t thenu = u1elseu = u2The work fa
tor for algorithm 4.3.1 isO �n � jHwj+ 2k3 + kn�
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Elie
e parameters w jp� qj jHwj �nw�2�k Workfa
tor(2m; k; d = 2t+ 1) StatDe
(1024; 524; 101) 137 0:2 � 10�7 251 252:5 261(1024; 524; 101) 153 0:21 � 10�8 258 294 268(2048; 1278; 141) 363 0:41 � 10�14 296 296:9 2107(65536; 65392; 9) 32000 0:17 � 10�13 293 2109:7 2109Table 1: StatDe
 for example parameter setsbinary operations having 
omputed the setHw in advan
e. The author of [25℄
laims that the latter 
an be done e.g. by the methods of [8℄, whi
h is to bedoubted (
ompare [39℄ and [14℄).The di�eren
e between p and q is very small for large 
odes, so we need a largeset Hw to distinguish the relative frequen
y estimates for p and q respe
tively.Al Jabri's initial analysis of the size of Hw needed for error 
orre
tion seems tobe too optimisti
. A more realisti
 bound seems to bejHwj � 5:4p(1� p) 1(p� q)2 : (18)from [39℄, whi
h is about a fa
tor 214 larger than Al Jabri's original bound(
ompare as well [14℄).It is obvious, that a setHw of the desired size will not even exist if w is 
hosento small. Goppa 
odes, BCH 
odes and GRS 
odes have a weight distribution\
lose" to the expe
ted weight distribution of a random 
odes, whi
h is thebinomial distribution [25℄. Consequently, we get the following 
ondition for Hw:jHwj � �nw�2�k.Table 1 shows some example sizes to atta
k M
Elie
e this way, where thework fa
tor refers to the 
omputational 
osts after having 
omputed the setHw. One 
an see, that the M
Elie
e 
ryptosystem resists this kind of atta
k forall parameter sets se
ure against CC-LWCW. Further, for all parameter setsproposed, StatDe
 has no advantage over CC-LWCW. However, so far thereis no algorithm known, whi
h performs the pre
omputation eÆ
iently.In [39℄, a improved version of StatDe
 is proposed, but the author 
on-
ludes, that this improvement is not suÆ
ient to atta
k the M
Elie
e Cryptosys-tem by statisti
al de
oding due to the large amount of pre
omputation needed.The authors of [14℄ 
on
lude, that for iterative de
oding a smaller set Hw as forthe initial StatDe
 is suÆ
ient as well. However, the size of Hw needed is stillvery large and in 
onsequen
e it is infeasible to 
ompute Hw by the existingmethods.
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e Atta
ksIn [6℄, the authors suggest to apply the low density algorithm from [29℄ to breakNiederreiter 
ryptosystem. In this se
tion we give an idea of this atta
k andexplain why this atta
k doesn't work with Niederreiter/M
Elie
e 
ryptosystemsbased on binary Goppa 
odes.The atta
k pro
eeds as follows. Given a parity 
he
k matrix H 2 Fn�(n�k)qof a Goppa 
ode and 
ipher text 
 =mH, wherem is a message, i.e. wt(m) = t(see se
tion 1.4). Let L be the latti
e generated by the row ve
tors in the matrixQ = 0� Idn+1 rHr
T0 qrIdn�k 1Awhere Ids is the identity matrix of dimension s and r is an integer. The ve
torm� = (m1; : : : ;mn;�1; 0; : : : ; 0) is a ve
tor in the latti
e and has at most t+1nonzero entries. If r � t, then the authors 
laim that m� is a shortest ve
tor inthe latti
e. So by �nding this ve
tor we 
an determine the 
orresponding plaintext.Unfortunately, this is not true for �elds of 
hara
teristi
 2. The reasonfor this failure is that m� isn't the shortest ve
tor for q = 2. The shortestve
tors are 2e1; : : : ; 2en+1, where ei = (0; : : : ; 0| {z }i�1 ; 1; 0; : : : ; 0). These ve
tors 
anbe obtained by taking the �rst (resp. se
ond, et
.) row twi
e and erase the last(n � k) elements in the ve
tor by taking appre
iate rows from the sub-matrixqrIdn�k. Sin
e these ve
tors have nothing to do with original message m, thisatta
k doesn't work with the Niederreiter 
ryptosystem based on binary Goppa
odes.5 Atta
ks infeasible with CCA2 ConversionsThe atta
ks outlined in the following aim at revealing partial information aboutthe message sent, or the error ve
tor used for en
ryption in the M
Elie
e 
ase.Thus they are not stand alone atta
ks, i.e. they 
annot be used to re
over theplaintext 
ompletely or to get the private keys, but they provide ways to redu
ethe system size and thus the 
omplexity of 
onse
utive atta
ks.One thing all atta
ks dealt with in this se
tion have in 
ommon is that they
an be avoided 
ompletely by suitable 
onversions for the originalM
Elie
e 
ryp-tosystem [27℄. Thus the atta
ks are mentioned here mostly for 
ompleteness'sake and to underline the importan
e for using one of the proposed 
onversions,some of whi
h we present later.5.1 Taking advantage of partially known plaintextsAn atta
ker for the M
Elie
e 
ryptosystem may use known bits of a sent mes-sage to re
over the whole plaintext. More pre
isely, the partial knowledge of
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orresponds to a redu
tion in the 
ryptosystemsparameters.Suppose an adversary knows the target plaintext bits mI for an index setI � f1; 2; : : : ; kg: Denote with J the 
omplement of I in f1; 2; : : : ; kg: Then theadversary may try to re
over mJ using the following redu
tion:mG =mIG�I �mJG�J :Therefore, we have 
�mIG�I =mJG�J � z
0 =mJG�J � z:An analogous redu
tion 
an be a
hieved for the Niederreiter s
heme. All atta
ksdes
ribed in the previous se
tion, that do snot use the parti
ular stru
ture ofthe 
ode 
an be applied to try and solve this equation for mJ : In parti
ular,this in
ludes the Generalized Information-Set-De
oding atta
k and the Finding-Low-Weight-Codeword atta
k. (Note that their su

ess is no longer guaranteedas we do not know wether G�J 
ontains an Information Set, whi
h is needed inboth 
ases.) However, the 
omputational 
ost for those atta
ks 
an be 
riti
allyredu
ed as k drops to jJ j:5.2 Taking advantage of known relations between mes-sagesAn adversary for the M
Elie
e s
heme may use the relation between two en-
rypted messages to determine error bits [5℄. This atta
k 
annot be adapted tothe Niederreiter 
ryptosystem. Let m1;m2 be two messages related by �; e.g.�(m1;m2) =m1 �m2: Then
1 � 
2 � �(m1;m2) = z1 � z2:Zero bits on the left hand side of this equation implyz1jk � z2jk = 0) (1 = z1jk = z2jk0 = z1jk = z2jk:Sin
e the weight of the error ve
tors z1; z2 is small, the �rst 
ase is highlyunlikely: Pr(1 = z1jk = z2jk) = � tn�2 :This enables an adversary to eÆ
iently guess error bits.A spe
ial 
ase is themessage-resend atta
k where the atta
ker 
an re
overz1 � z2 = 
1 � 
2:
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tion Atta
kThis atta
k is a weaker version of an adaptively 
hosen 
ipher text atta
k, inthat it does not require any de
ryptions, but only depends on the observationof the re
eiver's rea
tion on potential 
iphertexts [27℄. This atta
k again aimsat determining error bits and is therefore only appli
able to the M
Elie
e 
ryp-tosystem.An adversary may inter
ept 
iphertexts, 
hange a few bits, and wat
h therea
tion of the designated re
eiver on these modi�ed 
iphertexts. Sending mod-�
ations of an authenti
 
iphertext amounts to adding further error bits. If there
eiver 
annot de
ode (rea
tion: repeat request), the 
orresponding bits werenot in error originally. This may enable a Generalized Information-Set-De
odingatta
k, for example.The probability to need more than k rounds before hitting an error positionis �n�kt ��nt� :5.4 MalleabilityAdding 
odewords, i.e. rows of G to a 
iphertext yields another valid 
iphertext.Therefore, the original M
Elie
e 
ryptosystem does not satisfy non-malleability.Note that this is no problem in the Niederreiter 
ase, as there is no knownrelation that may be used to 
reate new de
odable syndromes from old ones.6 Conversions a
hieving CCA2-Se
uritySuppose an adversary who wants to re
over a message from its 
iphertext only,has a

ess to a de
ryption ora
le. He may not query the ora
le on the target
iphertext. Apart from that, the ora
le provides him with 
iphertext-plaintextpairs of his 
hoi
e. A 
ryptoystem is se
ure against adaptive 
hosen 
iphertextatta
ks (CCA2 se
ure) if su
h atta
ker has no advantage in de
iphering a given
iphertext. It is indistinguishable in the CCA2-model if the atta
ker has noadvantage in determining for a given 
iphertext and two plaintexts whi
h ofthem was en
rypted.In [27℄ Kobara and Imai review two generi
 
onversion. One was origi-nally presented by Point
heval [41℄ and the other by Fujisaki and Okamoto [15℄.Both 
onversions were designed to a
hieve CCA2 se
urity for a restri
ted 
lassof publi
 key 
ryptosystems. Kobara and Imai show, that these 
onversions 
ansu

essfully be applied to the M
Elie
e 
ryptosystem.Furthermore they and propose three 
onversion s
hemes spe
i�
ally tailored forthe M
Elie
e 
ryptosystem. To explain these 
onversions, we introdu
e the fol-lowing notation:
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tive 
onversion of any number in Z=Z�nt� to the 
orrespondingerror ve
tor of length nH Cryptographi
 hash fun
tion, outputting bit-strings of length log2 �nt�R Cryptographi
ally se
ure pseudo random number generator from �xedlength seedsE M
Elie
e en
ryption fun
tion, taking as �rst argument the message tobe en
rypted and as se
ond one the error ve
tor: E(m; z) = 
D M
Elie
e de
ryption fun
tion: D(
) = (m; z)MSBn(m) The n rightmost bits of m.LSBn(m) The n leftmost bits of m.6.1 Point
heval's Generi
 ConversionA fun
tion f : X � Y ! Z; (x; y) 7! z is partially trapdoor one-way (PTOWF)if it is impossible to re
over x or y from their image z alone, but the knowledgeof se
ret enables a partial inversion, i.e. �nding x from z: Point
heval [41℄demonstrated how any PTOWF 
an be 
onverted to a publi
-key 
ryptosystemthat is indistinguishable against CCA2.The M
Elie
e 
ryptosystem draws is se
urity from the assumption that itsprimitive is PTOWF: The fun
tion (m; z) 7! E(m; z) 
an be inverted to re
overm i� the private key, i.e. the generator matrix of the underlying Goppa 
ode,is known.Algorithm 6.1.1 Point
heval's generi
 
onversion { En
ryptionInput: Random r; r0 and the (possibly padded) message m:Output: A M
Elie
e-based 
ipher 
:z = H(mjjr)z = Conv(z)
1 = E(r0; z)
2 = R(r0)� (mjjr)
 = (
1jj
2)6.2 Fujisaki-Okamoto's Generi
 ConversionFujisaki and Okamoto propose hybrid en
ryption that merges a symmetri
 en-
ryption s
heme whi
h is se
ure in the Find-Guess model, with an asymmet-ri
 One-Way-En
ryption s
heme whi
h is suÆ
iently probabilisti
, to obtain apubli
-key 
ryptosystem whi
h is indistinguishable against CCA2. See [15℄ formore details. The adaptation of Kobara and Imai to the M
Elie
e primitive usesone-time padding with random numbers for the symmetri
 part, and M
Elie
e



D. Engelbert, R. Overbe
k and A. S
hmidt: The M
Elie
e Cryptosystem 40Algorithm 6.1.2 Point
heval's generi
 
onversion { De
ryptionInput: A 
ipher 
 and the 
orresponding M
Elie
e de
ryption fun
tion DOutput: The target plaintext m
1 =MSBn(
)
2 = LSBLen(m)+Len(r)(
)(r0; z) = D(
1)(mjjr) = 
2 �R(r0)if 
1 = E(r0;Conv(H(mjjr))) thenreturn melsereje
t 
en
ryption for the asymmetri
 one.Algorithm 6.2.1 Fujisaki-Okamoto's generi
 
onversion { En
ryptionInput: Random r; and the (possibly padded) message m:Output: A M
Elie
e-based 
ipher 
:z = H(rjjm)z = Conv(z)
1 = E(r; z)
2 = R(r) �m
 = (
1jj
2)6.3 Kobara-Imai's Spe
i�
 ConversionsKobara and Imai also present three 
onversions of their own. Their main 
on
ernis to de
rease data overhead introdu
ed by the previously mentioned s
hemes.One of the 
orresponding 
onversions is given below.
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Algorithm 6.2.2 Fujisaki-Okamoto's generi
 
onversion { De
ryptionInput: A 
ipher 
; and the 
orresponding M
Elie
e de
ryption fun
tion DOutput: The target plaintext m
1 =MSBn(
)
2 = LSBLen(m)(
)(r; z) = D(
1)m = 
2 �R(r)if 
1 = E(r;Conv(H(rjjm))) thenreturn melsereje
t 

Algorithm 6.3.1 Kobara-Imai's Spe
i�
 Conversion 
 { En
ryptionInput: Random r; a predetermined publi
 
onstant 
onst and the (possiblypadded) message m:Output: A M
Elie
e-based 
ipher 
:Note: It is assumed that the message m is prepared so that Len(m) �log2b�nt�
+ k�Len(
onst)�Len(r) where n; k and t are the parameters usedfor M
Elie
e en
ryption.
1 = R(r) � (mjj
onst)
2 = r �H(
1)
3 = LSBblog2 (nt)
+k(
2jj
1)
4 = LSBk(
3)
5 =MSBb(nt)
(
3)z = Conv(
5)if Len(
2jj
1)� blog2 �nt�
 � k > 0 then
6 =MSBLen(
2jj
1)�blog2 (nt)
�k(
2jj
1)
 = (
6jjE(
4; z))else
 = E(
4; z)
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i�
 Conversion 
 { De
ryptionInput: A 
ipher 
; the bit length of the random number used in en
ryptionLen(r) and the 
orresponding M
Elie
e de
ryption fun
tion DOutput: The target plaintext m
6 =MSBLen(
)�n(
)(Again, 
6 may be empty)(
4; z) = D(LSBn(
))
5 = Conv�1(z)
2 =MSBLen(r)(
6jj
5jj
4)
1 = LSBLen(
)�Len(r)(
6jj
5jj
4)r0 = 
2 �H(
1)(mjj
onst0) = (
1)�R(r0)if 
onst0 = 
onst thenreturn melsereje
t 
 Conversions and Data Redundan
yaConversion Dataredundan
y = Ciphertext size - Plaintext size(n,k) (1024, 524) (2048,1608) (2048, 1278)t 50 40 70Point
h. Len(r) + n 1184 2308 2308FujisakiOkamoto n 1024 2048 2048KobaraImai n + Len(
onstjjr)� log2b�nt�
 � k 536 480 655OriginalM
Elie
e n� k 500 440 770aWe follow the suggestion of Kobara and Imai and use Len(r) = Len(Const) = 160.Kobara and Imai 
laim to a
hieve a redu
tion in data redundan
y even belowthe values for the original M
Elie
e PKCS for large parameters. We point outthat this is only true if the message is prepared in su
h a way thatLen(m) � log2b�nt�
+ k � Len(r) � Len(
onst):Nonetheless, the 
ut in data overhead is remarkable. Their main result 
on
ern-ing se
urity is the following:Theorem 6.3.1 Breaking indistinguishability in the CCA2 model using any of
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onversions presented above, is as hard as breaking the original M
Elie
epubli
 key system.Furthermore, the Known-Partial-Plaintext Atta
k, the Related Message At-ta
k, the Rea
tion Atta
k and the Malleability Atta
k, all be
ome impossible,sin
e relations among plaintexts do no longer result in relations among 
ipher-texts. Already the simple hashing of messages before en
ryption prevents this.7 Other 
ryptographi
 appli
ationsIn this se
tion we want to look into digital signature and identi�
ation s
hemesusing error 
orre
ting 
odes. Up to now there has been little resear
h 
on
erningthe development of se
ure and eÆ
ient digital signatures based on the M
Elie
eCryptosystem. In fa
t M
Elie
e 
laimed in his original paper \the de
ryptionalgorithm [: : : ℄ 
annot be used to produ
e unforgeable 'signatures'."[37℄The �rst ideas to derive digital signatures from error-
orre
ting 
odes havebeen presented by Xinmei in [52℄. Xinmei's suggestion uses a M
Elie
e-typeen
ryption but was atta
ked and modi�ed by Harn and Wang [22℄ and �nallybroken by Alabbadi and Wi
ker in 1992 [1℄.One year later, J. Stern proposed an identi�
ation s
heme based on syndromede
oding [49℄ but a
knowledged himself that it 
ould not be modi�ed to aneÆ
ient signature s
heme.Alabbadi andWi
ker reviewed the 
han
es to design digital signature s
hemesbased on error-
orre
ting 
odes in [2℄ but did not �nd feasible models. Theirown proposal was su

essfully atta
ked by Stern [50℄.Thus all attempts to 
reate se
ure and reasonably eÆ
ient digital signatureson the basis of the M
Elie
e 
ryptosystem have failed until the paper of Courtois,Finiasz and Sendrier [11℄.7.1 Stern's identi�
ation s
hemeStern's identi�
ation s
heme is based on the Niederreiter 
ryptosystem.Let H be a (n � k) � n matrix 
ommon to all users. Chosen randomly,Stern 
laims that H generally will provide a parity 
he
k matrix for a 
ode withgood error 
orre
ting 
apability. Every user re
eives an n bit private key s ofpres
ribed weight p:� Publi
 key H; Hst = i; p� Private key sThe se
urity of the s
heme relies on the diÆ
ulty of the syndrome de
odingproblem, that is on the diÆ
ulty of determining the preimage s of i = Hst:Without the se
ret key, an adversary has two altenatives to de
eive the veri�er:
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ol 7.1.1 Stern's Identi�
ation s
hemeProver Veri�erChoose random n-bit ve
tor y and ran-dom permutation �; to 
ompute
1 = (�;Hyt) 
2 = �(y) 
3 = �(y � s)Send 
ommitments for (
1; 
2; 
3) Send random request b 2 f0; 1; 2gIf b = 0 ) reveal y; �If b = 1 ) reveal y � s; �If b = 2 ) reveal �(y); �(s) If b = 0 ) 
he
k 
1; 
2If b = 1 ) 
he
k 
1; 
3 andHyt = H(yt � st)� iIf b = 2 ) 
he
k 
2; 
3 and!(�(s) = p1. He 
an work with a random s0 of weight p instead of the se
ret key. Hewill su

eed if he is asked b 2 f0; 2g but in 
ase b = 1 he will hardly beable to produ
e the 
orre
t 
1; 
3 sin
e Hs0 6= Hs = i:2. He 
an 
hoose s0 from the set of all preimages of i under H; i.e. s 2H�1(it): This time he will fail to answer the request b = 2 sin
e !(s0) 6= p:Thus the atta
ker has 
han
es 2=3 to de
eive the veri�er in any round. Theidenti�
ation s
heme of Stern has not been broken. Unfortunately, it 
an notbe adapted to obtain an eÆ
ient signature s
heme. The standard method to
onvert the identi�
ation pro
edure into a prodedure for signing, is to repla
everi�er-queries by values suitably derived from the message to be signed. Thisleads to a blow-up of ea
h (hashed) plaintext bit to 2n signature bits and istherefore hardly appli
able here.7.2 CFS Signature S
hemeThe only working signature s
heme based on the M
Elie
e, or rather on theNiederreiter en
ryption was presented by Courtois, Finiasz and Sendrier in [11℄.Analogously to the results on the original M
Elie
e PKCS, the se
urity of theCFS s
heme 
an be redu
ed to the Bounded Distan
e De
oding Problem. TheBounded Distan
e De
oding Problem (BD) is the Syndrome De
oding Problemfor 
odes with known minimal distan
e. This extra knowledge allows the de
oderto restri
t his sear
h to 
odewords within the given distan
e to the re
eived one.Some believe this problem not to be NP-
omplete, as determining the minimumdistan
e of a linear 
ode in itself already is NP-
omplete, and this additionalinformation is given in the BD 
ase.
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ode be a (n; k)-Goppa 
ode, with error-
orre
ting 
apa-bility t, where n = 2m and k = n� tm; for some integer m: Denote with G thegenerator matrix and with H the parity 
he
k matrix, respe
tively.The idea of the CFS algorithm is to repeatedly hash the do
ument aug-mented by a 
ounter, until the ouptput is a de
odable syndrome. The signeruses his se
ret key to determine the 
orresponding error-ve
tor. Together withthe 
urrent value of the 
ounter, this error ve
tor will then serve as signature.The error-ve
tor length n 
an be redu
ed 
onsiderably, taking into a

ountthat only t of its bits are nonzero. With the parameters suggested by Cour-tois, Finiasz and Sendrier the number of possible error-ve
tors is approximatelygiven by �nt� = �2169 � � 2125:5 so that a 126-bit 
ounter suÆ
es to address ea
hof them. We need the following ingredients:h Publi
 hash fun
tionI Fun
tions that assigns ea
h word of weight t and length n a uniqueindex in the set of all these words.T M
Elie
e trapdoor fun
tion, outputting the error-ve
tor for a givende
odable syndromeH The publi
 parity 
he
k matrix.Algorithm 7.2.1 CFS digital signature { SigningInput: h; I; T ; r and the do
ument to be signed dOutput: A CFS-signature s:z = h(d)
hoose a r-bit Ve
tor i at randoms = h(zjji)while s is not de
odable do
hoose a r-bit Ve
tor i at randoms = h(zjji)e = T (s)s = (I(e)jji)The average number of attempts needed to rea
h a de
odable syndrome 
anbe estimated by 
omparing the total number of syndromes Ntot to the numberof 
orre
table syndromes Nde
:Ntot = 2n�k = 2mt = ntNde
 = tXi=0 �nt� � ntt!Nde
Ntot = 1t!Thus ea
h syndrome has a probabillity of 1t! to be de
odable. The CFS s
heme
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heme { Veri�
ationInput: A signature s = (I(e)jji); the do
ument d and the M
Elie
e publi
key HOutput: Is the signature valid?e = I�1(I(e))s1 = H(et)s2 = h(h(d)ji)if s1 = s2 thena

ept selsereje
t sParameter Sizes and Costsparameters n 215 216 217t 10 9 10 8 9 10size publi
key in MB k(n�k)=(8�10242) 0:58 1:12 1:12 2:38 2:38 2:38signature
ost t!t2m3 240 237 240 234 238 241veri�
ation
ost t 
olumnoperations2 218 219 219 220 220 220signaturelength log2(nt) 150 144 160 136 153 170needs about t! iterations, produ
ing signatures of length log2(r�nt�) � log2(nt).Thus, r has to be be larger than log2(t!).Atta
king the CFS signature s
heme via the birthday paradoxon is the bestmethod so far, whi
h is infeasible (
ompare [11℄).8 Performan
e and ParametersThe main reason why M
Elie
e re
eived little attention in pra
ti
e is be
auseof the huge key sizes in 
omparison to RSA. Like RSA, its se
urity remainsunbroken in its original form. It is as old as RSA, but less well studied. In thefollowing we review some aspe
ts of implementation, performan
e and (good)
hoi
e of parameters.As we have already mentioned, the key sizes are quite big in 
omparison toRSA. However, the M
Elie
e Cryptosystem has a mu
h faster en- and de
ryp-tion. We to take a look at the running times �rst and analyze the key sizesafterwards.
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e of En-/De
ryption and Key GenerationThe en
ryption of a messgage in the original M
Elie
e s
heme takes aboutk=2 � n+ tbinary operations plus the time to generate the error ve
tor. For de
ryption,the de
ryption algorithm gets faster if we store some matri
es in advan
e, whi
honly depend on the private key. We return to the notations of se
tion 1.3 and1.4 respe
tively.Theorem 8.1.1 The de
ryption of a 
iphertext of a M
Elie
e instan
e gener-ated by a (n = 2m; k; d) binary irredu
ible Goppa 
ode requires O �ntm2� binaryoperations.Proof. Let J � f1; � � � ; ng with jJ j = k and GJ invertible. We may 
omputemSG � zP�1 in n � m binary Operations and the 
orresponding syndrome inn � (n� k) more. Applying the algorithm of Patterson ([40℄, algorithm 2.3.1) weneed O �n � t �m2� binary operations to identify the ve
tor zP�1 and n more togetmSG. Having 
omputed (SGJ )�1 we need only further k2 binary operationsto re
over the message m.The time needed to en
rypt a message with Niederreiter depends on themethod of representing the message by a appropriate plaintext e of length nand weight t. This 
ould be done in several ways. We just want to point out,that the distribution of the support of e should be (almost) uniform to avoid
orre
t guessing of the positions of the zeros (
ompare [42℄). For example one
ould use methods derived from [51℄ or simple enumeration of all possible errorve
tors. The time of de
ryption depends on the time to re
over the plaintextand the time to re
onstru
t the original message from that plaintext.Theorem 8.1.2 Re
overing the plaintext from a 
iphertext of a Niederreiterinstan
e generated by a (n; k; d) Goppa 
ode requires O �ntm2� binary opera-tions.Proof. The proof is analogeous to the one of the theorem above.When generating an instan
e of the M
Elie
e Cryptosystem with n = 2m wesuppose that we already know a polynomial F 2 F2 [X ℄ s.t. (F2 [X ℄) =F = F2m .From [19℄ we know that the number of moni
 irredu
ible polynomials of degreet over F2m is bigger than (2mt � 1) =t. Thus the probability of getting an irre-du
ible polynomial by 
hoosing a random one of degree t with leading 
oeÆ
ient6= 0 is larger than 1=t. To 
he
k the irredu
ibility requires O �t2m2 + t3m� op-erations [24℄. Having found an irredu
ible generator polynomial g we need 2mevaluations of (g (x))�1 and n (t� 1) multipli
ations in F2m to generate the par-ity 
he
k matrix. For the M
Elie
e 
ryptosystem we need a Gaussian elimination(O((n�k)3) binary operations) at that point, to 
ompute the generator matrix.
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e Cryptosystem 48Next we have to generate the permutation and the s
ramble matrix and multiplythem with the generator matrix whi
h 
an be done in O �k2n+ n2� (M
Elie
e)and O �(n� k)2n+ n2� (Niederreiter) binary operations respe
tively. Togetherwith the time ne
essary to invert SGJ andM, this leads to the following theorem:Theorem 8.1.3 The running time (in binary operations) to generate a keypair for the M
Elie
e 
ryptsystem is O �k2n+ n2 + t3(n� k) + (n� k)3� andO �(n� k)2n+ n2 + t3(n� k)� for the Niederreiter 
ryptosystem.8.2 Key SizesThe method of storing the private key o�ers some variants. First we wouldwant to store the Goppa polynomial and the generator polynomial of F2m andadditionally the 
he
k matrix H. Se
ond it would be better to store M�1 or(SG�J )�1, to enhan
e the performan
e of de
ryption. The private key storedthat way has the size of(n� k)n+ (n� k + 1 + 2 � log2 n) + k2 + n � log2 nbits for M
Elie
e Cryptosystem and(n� k + 1 + 2 � log2 n) + (n� k)2 + n � log2 nfor the Niederreiter version. Alternatively, the holder of the se
ret key 
an omitstoring the matrixH, as it is not needed to 
ompute the syndrome of the re
eived
iphertext. However, this would de
rease the speed of de
ryption.To store the publi
 key requires n �k bits for the M
Elie
e 
ryptosystem. Forthe CCA2-se
ure variants of the M
Elie
e PKC it is possible to give the publi
generator matrix G in its systemati
 form. If we 
hoose the �rst k 
olumns ofG to be the identity matrix, then we 
an des
ribe the publi
 key by only givingthe last (n� k) 
olumns of G, 
alled the redundant part. This requiresk � (n� k)bits. The same is true for the the Niederreiter PKC. Table 2 shows the perfor-man
e of the original M
Elie
e PKC for some example parameters.8.3 Choi
e of ParametersUnfortunately, there is no simple 
riterion for the 
hoi
e of t with respe
t to n.One should try to make it as diÆ
ult as possible to atta
k the 
ryptosystemusing the known atta
ks. For the sample parameter sets from Table 2, Table 3shows the theoreti
al work fa
tors for the M
Elie
e 
ryptosystem (the CCA2-se
ure variants and the original one). In 
omparison, Table 4 gives the estimatedwork fa
tors for the RSA 
ryptosystem.As one 
an observe from the tables, today the best atta
k against M
Elie
e's
ryptosystem is CC-LWCW (Algorithm 4.2.3), whi
h is Stern-LWCW with
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Elie
e Size publi
 Workfa
torsystem parameters key in bytes (binary operations)(n; k; d = 2t+ 1) plain CCA2-se
ure en
ryption de
ryption(1024; 524; 101) 67,072 32,750 218 222(2048; 1608; 81) 411,648 88,440 220:5 223(2048; 1278; 141) 327,168 123,008 220 224(2048; 1025; 187) 262,400 131,072 220 224:5(4096; 2056; 341) 1,052,672 524,280 222 226:5Table 2: Performan
e of the M
Elie
e PKC
M
Elie
e Workfa
tor (binary operations)system parameters GISD Leon-LWCW CC-LWCW 3(n; k; d = 2t+ 1) p = 2 p = 3, l = m p = 2, l = 2m� 1(1024; 524; 101) 270 269 264(2048; 1608; 81) 2110 2107 298(2048; 1278; 141) 2120 2118 2110(2048; 1025; 187) 2115 2112 2106(4096; 2056; 341) 2195 2193 2184Table 3: Atta
king the M
Elie
e PKC3 Approximation without determining the exa
t value of the number of expe
ted iterations.The exa
t evaluation uses a Markov 
hain and thus no 
losed formula is available (see [9℄).

System Size Workfa
tor (binary operations)publi
 key en- de- bestin bytes 
ryption 
ryption atta
k 5RSA 1024-bit Modulus 256 230 230 279RSA 2048-bit Modulus 512 233 233 295RSA 4096-bit Modulus 1024 236 236 2115Table 4: Performan
e of the RSA PKC5 this is the NFS atta
k for fa
toring the RSA modulus, see [31℄.
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hain improvement. CC-LWCW has a polynomial spa
e 
omplexityand its work fa
tor may be approximated byO(n3)2�t log2(1�k=n),if t is small and k=n is not too 
lose to 1 (
ompare [43℄). Sin
e n = 2m andk = n � tm, N. Sendrier 
on
ludes, that the maximum degree of se
urity isobtained for an information rate k=n � 1� 1= exp(1). We omitted to 
onsiderthe statisti
al de
oding atta
k on the M
Elie
e Cryptosystem be
ause of seriousdoubts regarding the assumptions made by the author of [25℄, 
ompare se
tion4.3.9 Con
lusionAfter more than twenty years of resear
h the M
Elie
e PKC 
ryptosystem slowly
omes to the fore as a pra
ti
al alternative to RSA in appli
ations where longterm se
urity is needed. There are no known 
lassi
al or quantum 
omputeratta
ks on M
Elie
e's 
ryptosystem, whi
h have sub-exponential running time.Despite the la
k of eÆ
ient atta
ks on M
Elie
e's proposal, none of the 
ryp-tographi
 s
hemes based on 
oding theory is proven to be as se
ure as some
lassi
 problem of 
oding theory. Nevertheless, a key size of 123KB seems to bese
ure until the year 2041.The fast in
reasing amount of storage spa
e on small devi
es like USB To-kens, PDAs and mobile phones would even allow an appli
ation of the M
Elie
ePKC nowadays. We believe, that the M
Elie
e PKC might be used within thenext de
ades, even if no quantum 
omputer is available. The advantage of 
odebased 
ryptography lies in the faster en- and de
ryption, whi
h helps to redu
ethe battery drain of 
ryptographi
 appli
ations on mobile devi
es.Another interesting property of 
ode based 
ryptography is the fa
t, that one
an build a 
omplete infrastru
ture from it. Identi�
ation s
hemes, signatures
hemes and even random number generators as well as hash fun
tions areavailable.A
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