A Summary of McEliece-Type Cryptosystems
and their Security

(preprint)
D. Engelbert R. Overbeck * A. Schmidt T

TU-Darmstadt,
Department of Computer Science,
Cryptography and Computer Algebra Group.
{engelber, overbeck, aschmidt}@cdc.informatik.tu-darmstadt.de

May 10, 2006

Abstract

In this paper we give an overview of some of the cryptographic ap-
plications which were derived from the proposal of R.J. McEliece to use
error correcting codes for cryptographic purposes. Code based cryptogra-
phy is an interesting alternative to number theoretic cryptography. Many
basic cryptographic functions like encryption, signing, hashing, etc. can
be realized using code theoretic concepts.

In this paper we briefly show how to correct errors in transmitted data
by employing Goppa codes and describe possible applications to public key
cryptography.

The main focus of this paper is to provide detailed insight into the
state of art of cryptanalysis of the McEliece cryptosystem and the effect
on different cryptographic applications. We conclude, that for code based
cryptography a public key of 88KB offers sufficient security for encryption,
while we need a public key of at least 597KB for secure signing.

Keywords: McEliece cryptosystem, public key cryptography, code based
cryptography, Goppa codes.

*Funded by GK E-Commerce (Graduiertenkolleg 492 of DFG)
tFunded by DFG

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem

Contents
1 Introduction
1.1 History e e e e

1.2 Coding Theory and Problems
1.3 McEliece PKC
1.4 Niederreiter PKC o o o

Goppa Codes

2.1 Definition
2.2 The Minimum Distance of Irreducible Binary Goppa Codes . . .
2.3 Error Correction for Irreducible Binary Goppa Codes

Attacks on the Private Key

3.1 The importance of S,Pand M
3.2 Attack on the original Niederreiter PKC
3.3 Weak Keys and the Support Splitting Algorithm

Ciphertext Only Attacks

4.1 Generalized Information-Set-Decoding Attack

4.2 Finding-Low-Weight-Codeword Attacks
421 Leon e
4.2.2 Stern
4.2.3 Canteaut and Chabaud

4.3 Statistical Decoding Lo 0oL

4.4 Lattice Attacks L

Attacks infeasible with CCA2 Conversions

5.1 Taking advantage of partially known plaintexts
5.2 Taking advantage of known relations between messages.
5.3 Reaction Attack
5.4 Malleability L

Conversions achieving CCA2-Security

6.1 Pointcheval’s Generic Conversion
6.2 Fujisaki-Okamoto’s Generic Conversion
6.3 Kobara-Imai’s Specific Conversions

Other cryptographic applications
7.1 Stern’s identification schemeo,
7.2 CFS Signature Scheme 0.

Performance and Parameters

8.1 Performance of En-/Decryption and Key Generation
82 KeySizes e
8.3 Choice of Parameters.,

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem

9 Conclusion

3

50

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 4

1 Introduction

In this paper we want to give an overview over the McEliece cryptosystem and
the primitives it is based on. First, we give some introduction into coding theory
and the construction principle of the cryptosystem. In the second section, we
present Goppa codes, which at the moment seem to be the best choice for cryp-
tographic applications. In the sections three to five we present known attacks
on the McEliece PKC and consequences for the choice of system parameters.
Afterwards we will present CCA2-secure conversions and show how to build
other cryptographic protocols from the basic scheme. Finally we will discuss
performance and secure choices of parameters for the McEliece PKC.

1.1 History

In 1978 R. McEliece proposed the first public key cryptosystem which is based
on coding theory. McEliece’s proposal to use Goppa codes for cryptographic ap-
plications is one of the oldest public key cryptosystems and remains unbroken
for appropriate system parameters. In 1986, Niederreiter proposed a different
scheme which uses GRS codes. This proposal is equivalent (dual) to McEliece’s
proposal if we substitute the GRS codes by Goppa codes [33]. Sidelnikov and
Shestakov showed 1992, that Niederreiter’s proposal to use GRS codes is inse-
cure.

Several proposals were made to modify McEliece’s original scheme (see e.g.
[17], [16], [18], [46] and [26]). Most of them replace the Goppa codes with other
codes. However, most of them turned out to be insecure or inefficient compared
to McEliece’s original proposal (see e.g. [38] or [28]).

The most important variants of McEliece’s scheme are the ones proposed
by Kobara and Imai in 2001. These variants are CCA2-secure and provably as
secure as the original scheme [27].

Parallel to the efforts to build an efficient encryption scheme based on cod-
ing theory, there were several attempts to build other cryptographic protocols
based on error correcting codes. Most efforts to build a signature scheme failed
(compare [52], [22], [2] and [50]), until finally in 2001 Courtois, Finiasz and
Sendrier made a promising proposal [11]. In addition, there exists an identifi-
cation scheme by Stern [49], which is based on coding theory.

There are also attempts to build fast hash functions and random number
generators using the principles of coding theory (see e.g. [3], [13]). All in all,
this provides sufficient motivation to have a closer look at the McEliece cryp-
tosystem, as an serious alternative to the established PKCs based on number
theory.

1.2 Coding Theory and Problems

The security of the cryptosystems reviewed in this paper is based on the difficulty
of some classical problems of coding theory. Here we give an introduction into
the topic of coding theory.

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 5

Definition 1.2.1 An (n, k)-code C over a finite field IF is a k-dimensional sub-
vectorspace of the vector space F*. We call C an (n,k,d)-code if the min-
imum distance is d = ming yec dist (x,y), where “dist” denotes a distance
function, e.g. hamming distance. The distance of x € " to the null-vector
wt (x) := dist (0, x) is called weight of x.

Definition 1.2.2 The matrix C € F**" is a generator matriz for the (n,k)
code C over F, if the rows of C span C over F. The matrix H € F(n=k)xn g
called check matriz for the code C if HT is the right kernel of C. The code
generated by H is called dual code of C and denoted by C*.

With these definitions, we are able to define some basic problems of coding
theory. Here the distance function used will be the hamming distance although,
there exist other notions of distance.

Problem 1.2.3 The general decoding problem for linear codes is defined as
follows:

e Let C be an (n, k) linear code over F andy € F"™.
e Find x € C where dist (y,x) is minimal.

Let e be a vector of weight < ¢ := |%=1| and x € C. Then there is a unique

solution to the general decoding problem for y = x + e. The code C is said to
be an t-error correcting code.

Problem 1.2.4 The problem of finding weights (SUBSPACE WEIGHTS) of a
linear code is defined as follows:

o Let C be an (n, k) linear code over F and w € N.
e Find x € C satisfying dist (0,x) = w.

Our hope that we might be able to construct secure cryptosystems based on
the problems above is based on the following result.

Theorem 1.2.5 The general decoding problem and the problem of finding weights
are N'P-hard.

Proof. See [4]. m
We present another problem based on the equivalence of codes:

Definition 1.2.6 Two (n, k) codes C and C’ over a field F are called permutation
equivalent if there exists a permutation 7 of the permutation group S, over n
elements, such that

CI =T (C) = {(zwfl(l)’ - ,xﬂ-*l(n)) |X € C} .
The subgroup of S,, which keeps C fixed will be called Aut (C).

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 6

Given two generator matrices G and G’ the problem is to decide if the codes
generated by the matrices are permutation equivalent or not. In the case where
F = F> the definition of permutation equivalency coincides with the definition
of equivalency.

Definition 1.2.7 Two (n, k) codes C and C' over F are called equivalent if there
exists 7 € S,,, a n-tupel (a;);,.,, € F* and a field automorphism ¢ of F such
that -

xel & (925 (anfl(i)xw*(i)))gign ec

In section 3.3, we will see an algorithm which solves the problem to decide
whether two codes are permutation equivalent or not.

Throughout this paper, we will use the following notation. We write G = (G)
if the linear (n, k)-code G over I has the generator matrix G. We can write x € G
as (z1,+-,z,) € K*. For any (ordered) subset {j1, - jm} =J C{1,---n} we
denote the vector (zj,,---,z;,,) € K™ with x;. Similarly we denote by M.
the submatrix of a & x n matrix M consisting of the columns corresponding to
the indices of J and M. = (MT).J, for any (ordered) subset J' of {1,---,k}.

1.3 McEliece PKC

This cryptosystem was proposed by McEliece [37] and is the first, which uses
error correcting codes as a trapdoor. It remains unbroken in its original version.
Although it uses Goppa codes (see section 2) in the original description, any
subclass of the class of alternant codes could be used. However, it might not
reach the desired security (compare section 3.2 or e.g. [38]). The trapdoor for
the McEliece Cryptosystem using Goppa codes is the knowledge of the Goppa
polynomial used to generate the code.
We briefly describe the cryptosystem:

e System Parameters: n, t € N, where t < n.

e Key Generation: Given the parameters n, ¢t generate the following ma-

trices:
G': k x n generator matrix of a binary irreducible (n, k) Goppa code G
which can correct up to ¢ errors, where k is chosen maximal.
S: kX k random binary non-singular matrix
P: n xnrandom permutation matrix

Then, compute the k& x n matrix G = SG'P.
e Public Key: (G,t)

e Private Key: (S, Dg,P), where Dg is an efficient decoding algorithm for
G (see e.g. algorithm 2.3.1).

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 7

e Encryption: To encrypt a plaintext m € {O,I}k choose a vector z €
{0,1}" of weight ¢t randomly and compute the ciphertext c as follows:

c=mGdz.

e Decryption: To decrypt a ciphertext ¢ calculate
cPl=(mS)G @zP!

first, and apply the decoding algorithm Dg for G to it. Since cP~! has a
hamming distance of ¢ to the Goppa code we obtain the codeword

mSG' = Dg (CPil) .

Let J C {1,---,n} be a set, such that G.; is invertible, then we can
compute the plaintext m = (mSG’) ; (G, tst

There are some restrictions to the choice of the McEliece system parameters
given by the attacks, if we want to get optimal security. We are going to discuss
them later on.

Definition 1.3.1 The McFEliece problem is described as follows:

e Given a McEliece public key (G,t) where G € {0, 1}’”” and a ciphertext
ce{0,1}",

e Find the (unique) message m € {0,1}" s.t. dist (mG,c) = ¢.

It is easy to see that someone who is able to solve the general decoding
problem is able to solve the McEliece problem. The reverse is presumably not
true, as the code G = (G) is not a random one, but permutation equivalent to
a code of a known class (a Goppa code in our definition). We can not assume
that the McEliece-Problem is A/P-hard. Solving the McEliece-Problem would
only solve the General Decoding Problem in a certain class of codes and not for
all codes.

In the case of McEliece’s original proposal, Canteaut and Chabaud state the
following: “The row scrambler S has no cryptographic function; it only assures
for McEliece’s system that the public matrix is not systematic otherwise most
of the bits of the plain-text would be revealed” [7]. However, for some variants
of McEliece’s PKC, this statement is not true, as e.g. in the case of the CCA2-
secure variants (which we are going to present in section 6). The importance of
P is not that easy to see. We will come back to this question in section 3.

1.4 Niederreiter PKC

The Niederreiter PKC is a knapsack-type cryptosystem which uses an (n, k)-
linear code which can correct up to ¢ errors and for which an efficient decoding
algorithm is known. We describe the cryptosystem briefly:

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 8

System Parameters: n, ¢t € N, where t < n.

Key Generation: Given the parameters n, t generate the following ma-
trices:

H: (n — k) x n check matrix of a binary irreducible Goppa code G
of maximal dimension k£ which can correct up to ¢ errors

M: (n —k) x (n — k) random binary non-singular matrix

P: n x n random permutation matrix

Then, compute the n x (n — k) matrix H' = MHP.
Public Key: (H',)

Private Key: (P,Dg, M), where Dg is an efficient syndrome decoding
algorithm for G (see e.g. algorithm 2.3.1).

Encryption: A message m is represented as a vector e € {0, 1}" of weight
t, called plaintext. To encrypt it, we compute the syndrome

s=He'.
Decryption: To decrypt a ciphertext s calculate
M~'s = HPe'

first, and apply the syndrome decoding algorithm Dg for G to it in order
to recover Pe'. Now, we can obtain the plaintext e’ = P~'Pe’

The security of the Niederreiter PKC and the McEliece PKC are equivalent.

An attacker who can break one is able to break the other and vice versa [33].

2 Goppa Codes

In this paper, we consider only irreducible binary Goppa codes. The following

reasons make them interesting for cryptography:

e The lower bound for the minimum distance is easy to compute.

e The knowledge of the generating polynomial® allows efficient error correc-

tion.

e Without the knowledge of the generating polynomial no efficient algo-

rithms for error correction are known.

For a comprehensive introduction to Goppa codes see [36, 34, 23].

1See below

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 9

2.1 Definition

In this section, we will first define Goppa codes. Based on this definition, we will
describe a way to construct a generator and a parity check matrix for Goppa
codes.

Goppa codes were defined by V.D. Goppa in 1970 [21].

Definition 2.1.1 (Goppa polynomial, Syndrome, binary Goppa Codes)
Let m and ¢ be positive integers and let

t
9(X) =) g:X" € Fom [X]
=0
be a monic polynomial of degree ¢ called Goppa polynomial and
L= (’Y(),...,’yn,l) S Iqulm
a tuple of n distinct elements such that

g(vi) #0, forall 0<i<n.

For any vector ¢ = (co,...,cn_1) € FY, define the syndrome of ¢ by
n—1
ci g(X)—glv
Sex) = =3 2 IE) 000 g oy, 1)

i—0 g(vi) X -

The binary Goppa code G(L, g(X)) over Fy is the set of all ¢ = (cq,...,cn_1) €
Iy such that the identity
Se(X) =0 (2)

holds in the polynomial ring Fom [X] or equivalently if

Se(X) = i Xf% =0 mod g(X). (3)

Thus, we have

If g(X) is irreducible over Fam , then G(L, g(X)) is called an irreducible binary
Goppa code.

Remark 2.1.2 To emphasize the dependency of vector ¢ on sequence L, we
sometimes write ¢ = (Cygy...,Cy,_,). The elements yp,...,yp—1 € Fom are
called code support.

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 10

Goppa codes are linear codes. If g(X) is irreducible, we have g(y) # 0 for all
v € Fom . Thus tuple L from the definition may contain all elements of Fom .

Now we will show how to construct the parity check matrix of a Goppa code
G(L,g(X)). Since

X) i
9(7 ZJX ZXSZgj’yjls, forall 0 <i < n,
’Y s=0 j=s+1

we see that ¢ € G(L, g(X)), iff for all s =0,...,t —1

i Zg]'y]ls c; =0.
=0

% j=s+1
Thus, a parity check matrix of G(L, g(X)) can be written as

gt9(70) 9t9(Yn—1)"*
(g1 +970)9(0)™" -+ (ge—1 + gt Vn—1)9(Yn—1)"
H = : .. : = XYZ

(Zﬁ-:lgﬂé'*l) g(y)7t - (E§:1 gﬂiill)g(%fl)*l

1

where
g 0 0 --- 0 1 1 1
ge—1 g+ 0 -~ 0 Yo Tt Va1
X =) .], Y=) .) , and
g1 92 93 gt vl ot i
1
9(v0) L
7 — g(71)
1
g(Yn—1)

and therefore we have
c€G(L,g(X)), iff Hel =o. (4)

The entries of the matrix H are elements of the extension field Fom over Fy. If
we interpret Fom as m dimensional vector space over Fy, we can write H as a
matrix over [, of dimension mt X n.

The rows of matrix H generate a vector space V' which is a subspace of Fy
From (4) it follows that the Goppa code is a vector space which is dual to V.
Therefore we obtain a generator matrix G of a Goppa code by computing the
basis of the vector space dual to V. The rows of G are these basis vectors.

Since H is a mt xn matrix, the matrix G has dimension n x k, with k > n—mdt.
Thus, it defines a (n, k) Goppa code, where k > n — mt.

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 11

2.2 The Minimum Distance of Irreducible Binary Goppa
Codes

In this section we will determine the minimum distance of an irreducible binary
Goppa code.

Let G(L, g(X)) be an irreducible binary Goppa code with L = (o, ..., Yn—1)-
Let ¢ = (co,...,¢n-1) € G(L,g(X)) be a codeword and Tc = {i : ¢; = 1}. Then
we define

oo(X) = [T (X =) € Fem [X].
JETe

The derivative of o.(X) is

o)=Y I X—w).

i€Te jET\ {4}
From (3) it follows
0e(X)Se(X) =0L(X) mod g(X). (5)

Since g(v;) # 0 for all 0 < ¢ < n, we have gcd(oe(X),g(X)) = 1. Therefore,
oc(X) is invertible modulo g(X) and we have

Se(X) mod g(X).

It follows that
VeelFy: ceG(L,g(X)) & oL(X)=0 mod g(X).

The map Fym — Fym , — 22 is the Frobenius automorphism on Fym , therefore
every element y € Fom has a unique square root.
The Frobenius map

Fom [X] — Fom [X], f(X) =) fiX' = (F(X)? =D f7X™
i=0 i=0

is a injective, but not surjective, ring homomorphism. Its image is Fom [X?2], a
set of polynomials, which are perfect squares of the ring Fom [X].
The polynomial o/, (X) = Y"1, i0; X! is a perfect square, because in Fam
we have io; X1 = 0 for each even i. Since g(X) is irreducible, we have
VeeFy: ceG(L,g(X)) & o(X)=0 mod g*(X).
Thus, for any codeword ¢ € G(L, g(X))\{0} we have

wt(c) = degoe(X) > 1+ degoL(X) > 2degg(X) + 1.

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 12

2.3 Error Correction for Irreducible Binary Goppa Codes

As mentioned above, the minimum distance of a Goppa code G which is gener-
ated by an irreducible polynomial of degree ¢ is at least 2¢ + 1. Therefore, it is
always possible to correct up to ¢ errors. We now will describe such an error cor-
rection algorithm which corrects up to ¢ errors in the case of irreducible binary
Goppa code G(L,g(X)). The error correction of non-binary or non-irreducible
Goppa codes is slightly different and can be found in [36, 23].

Assume m € G(L, g(X)) is a codeword, e € Fy with wt(e) < ¢ is an error
vector, and

c=moe.

Given ¢, we want to compute e and m.
Note that since m is a codeword, we have Sy, (X) =0 mod g(X) and there-
fore
Se(X) = Se(X) mod g(X).

First, we define the error locator polynomial ce(X). For To = {i : e; = 1},
we set

oe(X) =] (X —) € Fan[X].
j€Te

From (3), it follows

0e(X)Se(X) =0L(X) mod g(X). (6)

e

We split 0e(X) in squares and non-squares. Then we have
0e(X) = (X)) + X% (X).

Since the characteristic of the field is 2, we have ¢, (X) = 8%(X). Thus equa-
tion (6) can be rewritten as follows

B (X)(XSe(X) + 1) = o®(X)Se(X) mod g(X) (7)

We can assume that e is not a codeword, thus Se(X) Z 0 mod g(X). Therefore,
there exists an inverse of Se(X) modulo g(X). We set T(X) = S;1(X), and
multiply equation (7) by T'(X). Then we obtain

B (X)(X +T(X)) = a®(X) mod g(X) (8)

As mentioned in the last section, each element of Fy: has a unique square root.
So let 7(X) € Fam [X] be the unique square root of the polynomial T'(X) + X,
ie. 7(X)7(X) =T(X)+ X mod g(X). Taking the square root of equation (8)
we obtain

BX)r(X) = a(X) mod g(X). (9)

In order to solve the last equation for known 7(X) and g(X), we have to deter-
mine a(X) and B(X) of least degree. By assumption we have deg(ce(X)) < t.
It follows that deg(a(X)) < [¢/2] and deg(B8(X)) < [(¢ — 1)/2]. This yields

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 13

a unique solution of equation (9) which can be found by applying the ex-
tended Euclidean algorithm. We recall that this algorithm may be used to
compute polynomials ay(X) + B (X)7,(X) = 0 mod g(X) in each step with
deg (B (X)) = deg(g(X)) — deg(ag—1(X)). This last formula presents the rela-
tion between the degrees of o and 3. After each step, the degree of 3 increases
as the degree of o decreases. Using this, one can see that there is a unique point
in the computation of the Euclidean algorithm, where the degree of both poly-
nomials is below the respective bound. More precisely, we run the algorithm
until deg(ay (X)) drops below |(t 4+ 1)/2] for the first time and get

degan(X) < [(t+1)/2] =1 < [¢/2].
In this round of the algorithm the following holds:

deg B, (X) = deg(Bk(X)) = deg(g9(X)) — deg(ax—1(X))
<t—[(t+1)/2) = [(t - 1)/2].

Now, we set a(X) = ax(X) and B(X) = Bi(X) (see algorithm 2.3.1). In
[36, 34, 23], it is shown in more detail that they fulfill equation (9) and are
unique.

Finally, the computation of zeroes for g.(X) = o?(X) + XB%(X) leads to
vectors e and m. We present the complete algorithm on the following page.

Now, we analyze the runtime of the presented error correction algorihm. To
compute the syndrome S.(X) employing the check matrix H, we need at most
(n — k)n binary operations. To compute T(X), we employ the extended Eu-
clidean algorithm. This takes O (t>m?) binary operations, as the computations
are modulo g(X), a polynomial of degree t and coefficients of size m. Com-
puting the sqare root of T(X) + X takes O (t*m?) operation since it is a linear
mapping on Fom [X]/g(X). The subsequently employed variant of the extended
Euclidean algorithm takes O (t2m2) binary operations, too. These steps are all
comparatively easy in comparison to the last step of the algorithm, which is to
find all roots of the error locator polynomial. This last step can be performed in
n(tm? + tm) binary operations, thus the whole error correction algorithm needs

(’)(n-t-mz)

binary operations, as mt > (n — k).

3 Attacks on the Private Key

In the following sections we present several attacks on the McEliece PKC. In
this section we view attacks that aim to get the private key from the public
key. We will see that not every class of linear codes is a secure choice for the
McEliece cryptosystem.

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 14

Algorithm 2.3.1 Error Correction of Binary Irreducible Goppa Codes

Input: A binary irreducible Goppa code G(L, g(X)), a vector c = m @ e,
where m is a codeword and e is an error vector.
Output: The message m and the error vector e.

/* Compute the syndrome of ¢ */

Se(X) = E?:_Ol x-; mod g(X) (or use the parity check matrix H)

if S¢(X) =0 mod g(X) then
/* there is no error, ¢ is a codeword */
return(c, 0)

else
/* there are errors, ¢ is not a codeword */
T(X)=S.1(X) mod g(X)

7(X)=+4/T(X)+ X mod g(X)

/* extended Euclidean algorithm */
i=0;7_1(X) = a1(X) = g(X); ro(X) = ao(X) = 7(X); f_1(X) = 0;
Bo(X) =
while deg(r;(X)) > [(t + 1)/2] do

t=1+1

Determine ¢;(X) and r;(X), s.t. 7;(X) = ri—2(X) — ¢;(X)ri—1(X)

and deg(r;(X)) < deg(r;—1(X))
/Bi(X)zﬂi— ()+qz() i— ()
al(X) = T‘,(X)

o(X) = ((ai(X))? + X (B:i(X))?) with ¢ € Fom, s.t. o(X) is monic
/* Determination of zeroes of oo (X) */

fori=0ton—1do
if o(y;) = 0 then

ei:].
else

ei=0

m=cde

return(m, e)

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 15

3.1 The importance of S, P and M

Suppose, the set L which was used to generate the secret Goppa code for some
public key of the McEliece PKC is known. This is true for normal applications,
and if P is secret, then L may be revealed without security problems.

Suppose that g is unknown. Let H' be the systematic dual matrix of SG' =
G. Assume further, that an attacker is able to recover P and M such that
M~!H'P~! = H, where H = XYZ has the form given in section 2 (represented
over F5). Then he can compute g in the following way: The matrix g;Z is
written in in the first m rows of H. The matrix Y is determined by L. Thus the
attacker can recover (X/g;) by solving some linear equations. Since g defines the
same Goppa code as (g/g:), the attacker is now able to correct errors efficiently.
This breaks Niederreiter’s as well as McEliece’s cryptosystem.

If the matrix P is revealed, it is easy to recover the generator polynomial
from H'P~! using equation (6), as S.(X) = 0 for every binary n vector ¢ with
HP lc™ =0.

The secret matrix S indeed has no cryptographic function in hiding the secret
polynomial g. Today, there is no way to recover H with the knowledge of S™!G
only.

For the security of the McEliece PKC it is absolutely crucial to keep M
secret. The knowledge of M—1H' = HP is sufficient to recover g. We may
interpret M—1H’ to be a matrix over F,m. As we will see in the following, this
allows an efficient computation of g and P.

3.2 Attack on the original Niederreiter PKC

Niederreiter proposed his cryptosystem originally using generalized Reed-Solo-
mon (GRS) codes. In 1992 V.M. Sidelnikov and S.0. Shestakov proposed a
attack on Niederreiter’s cryptosystem using GRS codes [47] which reveals an
alternative private key in polynomial time. We consider this attack to be worth
mentionable, as Goppa codes are subfield subcodes of GRS codes. Even though,
the results from [47] do not affect the security of the original McEliece PKC.

In their attack, Sidelnikov and S.O. Shestakov take advantage of the fact,
that the check matrix of GRS code is of the form

zaY zial - za

0 1 s

_ 2209 2209 ter 2209
H= € Fpx(s+1) (10)

@Y zpal oo+ zpald

Note that the matrix X~'H = YZ from section 2 is of this from, too. It follows,
that the matrix H is a check matrix of a Goppa code, or to say it differently,
each Goppa code is a subfield subcode of a GRS code.

A public Niederreiter key is of the form H' = PHM, where M is a non-singular
matrix and P a permutation matrix. The permutation matrix P does not change
the structure of H, so we don’t have to worry about P. The entries of H' can be

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 16

viewed as the values of polynomials M.; (whose coefficients are represented by
the i-th column of M and therefore are denoted in the same way) multiplied by
Z4i

ZlM.l (al) ZlM.Q (al) ZlM.s (al)
H’ ZgM.l (ag) ZQM.Q (ag) e ZQM.S (ag)
oM (an) 2oMao(an) -+ 2nM.s(ay)

where M.; (z) = >3°_ Myz.

Sidelnikov and Shestakov conclude, that each entry of the row H). can be ex-
pressed by a polynomial in a;. From this observation one can derive a system of
polynomial equations whose solution yields the private key. We will need the no-
tation H = Z- A with A := Z7'H and the diagonal matrix Z := diag[zy,- - - , Zs].

We want to assume without loss of generality that a; = 1 and a3 = 0. In
order to do this, we have to view the matrices H, M and H' as matrices over
F :=F, Uoco with 1/o0o =0, 1/0 = 0o and f (00) = faegs for every polynomial
f(z) = E;.ligof fiz? over F,. Sidelnikov and Shestakov show that for every
birational transformation (F-automorphism)

b
¢ (z) = Z;:j__d with a,b,c,d € Fy, ad —bc # 0
there exist z{,--- , 2] and a matrix M’ such that

Z:’L‘b(al)o Z:’L¢(al)1 e z1¢(a1)’
¢ (a2)” 25p(az)’ -+ 2o (a2)’

H’)) (M) ML

2ho(an)’ 2hd(an)' o 2hd(an)’

For every three numbers a;,as, a3 € I, it is possible to find a birational trans-
formation ¢ s.t.

¢(a1) =1 =
¢(a2) =0 = T2
¢(az) =00 =1uz3
¢(aj) :m]7]¢{17273}

Thus we can make the assumption mentioned above. Note that because x3 = oo
we have z; # oo for all 7 # 3.

We can use Algorithm 3.2.1 to recover a (alternative) private Niederreiter
key from the public key. The algorithm generates a system of polynomial equa-
tions based on the assumption z; = 1, zo = 0, z3 = oo and solves it. We
are going to explain the algorithm briefly. First we have to remember the
identification of the entries of H' with polynomials evaluated at the a;. Thus
for ¢; € Fst!, ¢ = 1,2 and j € {1,---,n}, the scalar product Z%,H},ci is the
value of a polynomial 7; at x;, where 7; is of degree at most s. Defining
J={l,s+2,5s+3,---,2s} and Jo = {2,s+2,5s+3,---,2s} we can solve

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 17

H’Ji,ci = 0 for i = 1,2 we get two polynomials 71, my with zeroesin x5y, -+ , 22
and in z, zo respectively. We know that z; = 1,22 = 0 thus

Hici mi(z;) m (00) zi—1_m(ws) z—1

Hico ma(zj) ma(o0) w2 (z3) oz

which reveals z; for j ¢ {1,2,s+2,---,2s}. To determine the missing z;,
j€{s+2,---,2s} we repeat the procedure (introducing cs, J3, ¢4 and Jy) and
take into account the knowledge of the already determined z;. Afterwards we
perform another birational transformation ¢’ on the z; s.t. a; = ¢’ (x;) are
finite.

Knowing all a;, i € {1,--- ,n} we are able to recover z3,--- , 2512 assuming
that z; = 1. Defining J5 := {1,2,---s + 2} and solving c5Hf,5_ =0forecs € IF‘;H
we get a polynomial s.t. E;:f cs5;2iM;. (zj) =0fori =1,---,s+2. Expressing
this in matrix form we get:

C5(I:IM)J5. = C5(ZA)J5M =0

and consequently we know that c5(ZA);, = 0, which gives us a linear system
with s + 1 unknowns and s + 1 equations since z;, A and c5 are already known.
Now we can determine M and in continuation the remaining z;. Algorithm 3.2.1
has a running time of O (s* + sn). For details see [47].

Remark 3.2.1 Algorithm 3.2.1 can not be applied to McEliece/Niederreiter
cryptosystems using Goppa codes. Even though for every Goppa code there is
a checkmatrix H which has the same structure as the check matrix H for GRS
codes in equation (10) (see [36]), there is no analogous interpretation of H' for
the Niederreiter cryptosystem using Goppa codes. We are able to view H as a
matrix over [, if we are using Goppa codes, whereas this doesn’t work for GRS
codes. Thus we have different matrices M: M € Foi.™* 1) g1 the GRS case

and M € F;n(sﬂ)xm(sﬂ) for Goppa codes. Thus, in the latter case, H' has no
obvious structure, as long as M is unknown.

3.3 Weak Keys and the Support Splitting Algorithm

P. Loidreau and N. Sendrier proposed a way to identify a subclass of Goppa
codes, namely the ones with binary generator polynomial g € Fy [X]. If an
attacker knows, that the secret generator polynomial is binary, this reduces
the search space of a brute force attack on the private key [35]. Their general
idea is to take advantage of the Support Splitting Algorithm (SSA) presented
in [44]. The SSA can be used as an oracle to decide whether two codes are
permutation equivalent as well as to determine the automorphism group of a
code. P. Loidreau and N. Sendrier use this ability, to determine if the generator
polynomial of a Goppa code is a binary (irreducible) polynomial. If this is the
case, we search the space of the Goppa codes with binary generator polynomial
for a code, which is equivalent to the one given by the public generator matrix.

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 18

Algorithm 3.2.1 GRSrecover [47]

Input: H = (h;]) € IF((';X(SH) and t, a Niederreiter Public key.
Output: H,P of the corresponding private Niederreiter Key.

J={1,s4+2,5+3,---,2s}; Jo ={2,5+2,s+3,--+,25};
J3 = {173747"' 75+1}; J4 = {273747"' 75+1}; J5 = {17275+2}a
fori=1to4 do
solve H'; ¢; = 0 with ¢; € IF‘;H \ 0;
fOI’nglUJQ do
//
Bij = Hj.e; B2; = Hijco;
bj = Brj/Baj;
for j € {n,2s,---,s+2} do
B3; = Hj.c3; Baj = Hj.cy;
b = b’é% . %, // Note, that we already know b,,.
21 =1; zo = 0; z3 = 00;
for j =4 ton do
// Determining the values of x;.
2y = bs/ (b5 — b))
choose some a € F, differing from all z;;
for j =1tondo
// Mapping the x; to finite elements.

-1
a; =(a—z;)" 5 Aj. = (a}, - ,af);
solve csH'; = 0 with c5 € F5*1 \ 0;
zZ1 = 1;
s+2
find zs,--- y Zs42 € Fq s.t. Zj:l C5]'Z]'Aj. = 0;

for i =0to s do
solve Ay, M.; = (z;lH}i);_rer;
M= (Mg, ,My);
for j =3tondo
zp=Hj (M™1)
Return a1, ,an, 21, , 2n, M

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 19

If such a code is found, the SSA can be used to recover the permutation matrix
P. There is another attack by Gibson [20], which aims to recover the matrix
P, but we forbear presenting it here, as its average work factor is larger than
27m(1+0(1) hinary operations [43].

The Support Splitting Algorithm was presented to solve the problem to de-
cide whether two codes are permutation equivalent in (almost) polynomial time.
We will explain it in the following. Our notation in the following presentation
of the algorithm will differ slightly from that used in [44] so as not to confuse
the reader of the paper with two different definitions of a signature. The main
idea is to partition the index set of the code C into small sets, which are fixed
under operation of elements of Aut (C). We have to introduce some definitions
first:

Definition 3.3.1 Let £ be the set of all codes and let M be a arbitrary set. A
function f : £L x N +— M is called permutation invariant if for all (n, k) codes
C and all permutations 7 on {1,---,n} the equation f (C,i) = f (7 (C),n (3))
holds. A permutation invariant function f is called discriminant for C if there
exist 4,7 € {1,---,n} s.t. f(C,7) # f(C,7). It is further called fully discrimi-
nant for C if

Vije(t, . ny 20 # 3= f(C,i) # f(C,J)

If we have two permutation equivalent codes C and C' and a fully discriminant
function for C, then we are able to name the permutation 7 s.t. 7 (C) =C'. In
order to build a discriminant function for C, we employ the weight enumerator
and punctured codes:

Definition 3.3.2 Let C be an (n,k) code over K. Let J be any subset of
{1,---,n}. Then the code C punctured in J is defined by

Cy :{Xan|XJ =0 and 3y60Vj€JXj :yj} .

The weight enumerator W : £ — N is the function s.t. W (C), is the number
of words of weight i in the code C for all i € N.

Example 3.3.3 The function W' : £ x N = N, (C,i) = W (C{i}) is permu-
tation invariant. Furthermore, W' is discriminant for most binary (n, k) codes

C.

We are going to use discriminant functions to partition the index set of a
code. Starting with a function f discriminant for C, we want to construct a
function g more discriminant for C in the sense of

|g(ca{1a ’n})| > |f(ca{1a an})|

for the (n, k) code C. The function g is called strictly more discriminant for C if
we can replace > with > in the inequality above. We repeat this process until
we get a fully discriminant function for C. The following two definitions will
enable us to do so.

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 20

Definition 3.3.4 Let f,g be two permutation invariant functions. We define
the product of f and g as

fxg: LXN—=>MxM,
(€,4) = (f(C,1),9(C,9)) ,
and the dual of f as
fr: LxN-= M,
(C,i) = f(CH,0) .
The function f is called self-dual if f = f*.

It is easy to see, that f x g is more discriminant than f. With the definitions
above we are able to describe the Support Splitting Algorithm (algorithm 3.3.1).
It mainly consists in a while-loop in which definitions 3.3.4 and 3.3.2 are used
to get more discriminant functions for a given code C, until a fully discriminant
function for C is generated. After the while-loop the index set of C is partitioned
in a standardized way.

Algorithm 3.3.1 Support Splitting Algorithm (SSA)

Input: G generator matrix of a linear (n x k) code C,
S : L x N— M permutation invariant discriminant for C.
Output: P ={(Pj,j)},<jcn> Pi € {1,+,n}, called labeled partition.
T a permutation invariant, discriminant function for C.

In:{]-a 7n};
J=0;
To = S;

while (a function strictly more discriminant for C than T exists) do
choose L C T; (C, I,) at random;
Tj41(C,i) =T (C,i) x S (Cpicr,|T(c,iyeLys) X ST (Clicr,|T(c,iyeL}s 1)
J=Ji+1L
T = Tj;
for j =1ton do
if j € U,<;~; Pi then
P;=0;
else

Pj=A{i € L|T (C,i) =T (C,5)}

There are two main difficulties with the algorithm. The fist one is, that
it won’t terminate if we are not able to generate a fully discriminant function
for C in the while-loop. Only then we would know, that there does not exist
any further refinement of T;. However, remark 3.3.7 will give us a termination
criterion for binary Goppa codes. The second difficulty is to find a good choice
for the function S. According to [35] and [44] for binary codes C we choose

S: LxN — NN

0= (W (ccornCa)”) W ((CL){i} n <(CL){i})L>> (11)

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 21

as input for SSA, where WV is the weight enumerator. This function is discrimi-
nant in practice. Choosing suitable criteria for exiting the while-loop, algorithm

3.3.1 runs in time . N
o (n3 4 odim(enCt) 2 160 (n)) : (12)

see [35]. To see that the average running time of SSA is polynomial bounded
we need to estimate the dim (C N C*)-term in equation (12) and the cost for
computing the weight enumerator W. The worst-case computation cost of W for
a g-ary code of length n and dimension is proportional to ng* operations in F,.
However, the average cost of computing the weight enumerator is proportional
to 2n operations [44]. We continue with determining the dim (C N C™*)-term:

Proposition 3.3.5 Let C be an (n,k) code over F,. We call CNC* the hull of
C. The average dimension of the hull of C tends to a constant when the size of
the code goes to infinity. This constant is equal to

= 1
R:Zqu.

=1

The proportion of (n, k) codes over Fy with a hull of dimension | > 0 is asymp-
totically equal to
Rl:lel/(ql—l) WithROZﬁ ! -,
14qg7*

=0

Proof. See [45], [44]. m

As we have already mentioned SSA is unlikely to terminate in the version of
algorithm 3.3.1. Thus we have to make some assumptions on its output if we
choose other termination criteria for the while-loop, than the one given in the
algorithm. We will see, that these assumptions lead to a suitable termination
criterion, if C is a Goppa code.

We write P = SSA (C) if the labeled partition P = {(P;,)}, ., is output
of SSA on input of the generator matrix of C. The nonempty P; of the output
of SSA are called the cells of P. Two labeled partitions P and P’ are called
equivalent iff a permutation 7 € S,, exists, s.t. for all s € I, [Ps| = | P}, |5 we
write P = P’. The fundamental property of SSA is that

C=n(C)=P=P,

where 7 € S,,. Thus the output of SSA on input of two permutation equivalent
codes is identical and the orbits of the elements of the code support under the
action of Aut (C) constitute the finest obtainable partition.

Assumption 1 If SSA on input G and G’ returns P, T and P',T' respectively,
then
(T((G),N)=T(G),N AP=P) = (G =r(G)),

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 22

This assumption is satisfied in practice, if the number of cells is larger than
a few units. From this observation the following assumption about the behavior
of SSA is derived:

Assumption 2 On input of the generator matriz of C the SSA returns a labeled
partition whose cells are the orbits of the elements of the code support under the
action of Aut (C).

Assumption 2 seems to hold for (binary) codes of length > 50 and is based
on experiments by P. Loidreau and N. Sendrier [35]. Now, if we know Aut (C),
then we can easily determine for every for C discriminant function 7" whether
there exists a strictly more discriminant function for C, or not. Fortunately we
can determine Aut (G) for a Goppa code G in some cases:

Theorem 3.3.6 With the notation of remark 2.1.2. Let G (L,g) be a binary
(n, k) Goppa code defined by a generator polynomial g € Fym [X] with coefficients
from a subfield Fys of Fym . If n = ¢"™, then AUT (G) contains the automorphism

. 2°
o :Fgm — Fgm,z— 7 .

Note that the elements x € Fym are the code support and corespond to positions
which are determined by L.

Proof. The proof is derived from a theorem by Moreno [36], [35]. m

Here we will only consider s = 1, i.e. only binary Goppa codes with binary
generator polynomial. In such cases, the group generated by the Frobenius field
automorphism is in general exactly AUT (G) [35]. Based on this theorem and
the assumptions above, we get the following termination criterion for algorithm
3.3.1:

Remark 3.3.7 Let G be a binary Goppa code over F;= with binary generator
polynomial. Assume, that the group generated by the Frobenius field automor-
phism over F,~ is exactly Aut (G). Let P21 be the set of different orbits of the
code support under the action of Aut (G). Then the condition

(a function strictly more discriminant for G than T exists)
in algorithm 3.3.1 is equivalent to
T (9N < [PA].
Further, the running time of algorithm 3.3.1 is given by equation (12).
Let’s return to the original problem. We do know the public McEliece key

(G,t) and want to reconstruct the private key. If assumptions 1 and 2 hold,
we can identify a weak key (i.e. a McEliece-Instance, generated with a binary

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 23

generator polynomial) by comparing the cardinalities of SSA ((G)) with the
cardinalities of the different orbits of the elements of the code support under
the action of Aut ((G)): If the SSA does not terminate or returns a function T'
such that

T (C,N)]| £ [PA],

then we assume, that (G) = G does not have a binary generator polynomial.
Otherwise, we identify a “weak key ”, i.e. we assume, that G has a binary
generator polynomial.

Once a weak key is identified, we can determine the binary Goppa polynomial
used to generate the public key G by brute force. We check if

SSA ((G)) = SSA (G(L, g(X)))

for all (irreducible) binary polynomials g of degree t, where G(L,g(X)) de-
notes the Goppa code defined by the set L and g (compare section 2). After
having identified the generator polynomial of G, one can determine the secret
permutation matrix P. In order to do so, we have to pick ai € {1,--- ,n} s.t.
AUT (Gyiy) = {1} and a j out of the orbit of i under Aut(G). Then Gy;y and
(G)(;, are equivalent and we get the permutation by applying SSA to both. This
produces partitionings containing only cells of cardinality one (under assump-
tion 2) and the matches between the cells provide the permutation. The authors
of [35] claim that most i serve the last condition. The number of irreducible
polynomials of degree 50 is approximately 2*4. Thus the average runtime of the
attack on weak keys for McEliece parameters n = 1024, ¢t = 50 is

(2** +1) O (n® + 28n’log (n)) ~ 27,

where R is given in proposition 3.3.5. We conclude, that the choice of n = 1024,
t = 50 for McEliece does not reach the desired level of security, if we want to
use binary generator polynomials.

There is a possibility to speed up this attack by a factor (log (n))3 if we first
check the idempotent subcodes against each other in the brute force part of the
attack, instead of comparing the Goppa codes themselves.

Definition 3.3.8 Let G be a Goppa code, then a word a € G is called idempo-
tent if

a = (a%, o ,a%fl) = (ag—1(%), .. ,ag_1(,yn_1)) .
The set of all idempotents of G is a linear subcode of G and is called the idem-
potent subcode Zg of G.

The subcode Zg may be mapped to a linear code Z of length equal to the
number of different orbits of Fom under o [35]. The code Z has the same di-
mension as Zg and its length is shorter by a factor close to m. We conclude
that the use of the idempotent subcode provides a speedup of the attack close
to the factor m3, thus the choice of a binary generator polynomial for the secret
Goppa codes does not provide sufficient security, even for parameter sets with
n > 1024.

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 24

Remark 3.3.9 This attack may be generalized to detect Goppa codes with
a generator polynomial over any subfield of Fsn but the class detected this
way is much too big to perform an exhaustive search. Further, the number of
polynomials classified by this property is much too small to provide an effective
attack against the McEliece cryptosystem.

4 Ciphertext Only Attacks

In this section, we will first present algrorithms for solving the general decod-
ing problem (see Problem 1.2.3). These algorithms yield to different attacks
against cryptosystems based on linear error-correcting codes. On input of a
code generator matrix G (a part of the public key) and a ciper-text c, these at-
tacks compute the plain text corresponding to the cipher text c. Although these
attacks require exponential time, they are faster than the brute force algorithm.
At the end of the section, we will describe an attack by Brickell and Odlyzko
[6] based on lattice reduction and show why this attack does not work with
McEliece or Niederreiter cryptosystems based on binary Goppa codes.

4.1 Generalized Information-Set-Decoding Attack

This attack was proposed by McEliece in his original paper [37]. Lee and Brickell
systematized and generalized it in [30]. Tt solves the general decoding problem
assuming the knowledge of an upper bound for the distance to the next code
word.

We will begin by presenting the idea of the attack. Assume we are given a
generator matrix G of a linear error-correcting code and a cipher text ¢ = mG®e
where e is the error vector of weight ¢t. Then, we randomly choose k& columns of
G and c. If there is no error in the chosen columns of ¢ and the k£ x k matrix
builded from k& columns of G is invertible, then we can easy determine m.

Now we will give a detailed description of the attack. It proceeds as follows.
Let Z C {0,...,n — 1} with |Z| = k = dim G. As in section 1.2 we denote by
Gz, ¢z, and ez the k columns picked from G, c, and e, respectively. Then the
following relationship is true

cr = mGz @ er.
If Gz is non-singular and ez = 0, then
m = CIGfl.

If Gz is non-singular and wt(ez) is small, then m can be recovered by guessing
ez and checking whether

wt((cz D er)G; ' Gdc) =t

We will estimate the work factor of this attack (see Algorithm GISD). The

number of sets Z, such that there are exactly ¢ errors in vector cz is (¥) (7).

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 25

Algorithm 4.1.1 GISD
Input: n X k generator matrix G, a cipher text c = mG & e, where m is the
plain-text and e is the error vector of weight ¢, a positive integer j < t.
Output: The plain-text m

while true do

Choose randomly Z C {0,...,n — 1}, with |Z| = k.

Q: = Gfl; Q2 = Q16

z=c®czQ

for : =0to j do

for all ez with wt(ez) =i do
if wt(z ® ezQz) = ¢ then
return((cz ® ez)Q1)

The number of all sets Z with |Z| = & is (Z) Therefore, the expected number
for choosing the set Z such that there are at most j errors in vector cz is

D
7 t\ (n—t
i—o () (20
The number of error vectors ez with wt(ez) < j is

v=y ().

=0

Therefore the expected work factor of the attack for given 5 and (n, k) Goppa
code with minimum distance 2t + 1 is

W; = oT;(k* + N;k),

where « is a small constant.
In [30] the authors propose to use j = 2 to minimize the Wj.

4.2 Finding-Low-Weight-Codeword Attacks

In this section, we will present three algorithms which solve the problem of
finding weights (see Problem 1.2.4). These algorithms can be used to break
McEliece or Niederreiter cryptosystems in the following way. Assume we know
a generator matrix G of a linear error-correcting code with minimum distance ¢
and a cipher text ¢ = mG @ e, where wt(e) < t/2. We compute the codeword
with the minimum weight in a new code generated by matrix

(€)

Since this codeword is e, this attack can be used to recover the plain text m
from the given cipher text c.

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 26

All three algorithms presented below are based on the same idea. Assume
we have a code C given by a generator matrix G. The algorithms first search
for codewords of small weight in a restricted code generated by Gs where S is a
random subset of {0,...,n — 1}. Then, they expand these codewords to code-
words in C and check whether the codewords in C have the desired weight. The
algorithms differ in the way of choosing for set S and the strategy of searching
for codewords of small weight in the restricted code.

Before we describe the algorithms, we will will give some necessary notations
and definitions.

Let N'={0,...,n — 1} be the set of all coordinates. As in the last section,
we will use the set Z C N with |Z] = k = dim G.

By G = (V,W)z, we will denote the decomposition of G in two matrices V
and W, such that V = (G;)iez and W = (G;);¢z, where G; is the i-th column of
G.

Now, we will introduce the information set which allows us to reduce the
computation cost in the algorithms we will present below.

Definition 4.2.1 Let Z C N, such that |Z| = k. Then Z is an information set
for the code C iff there is a generator matrix G for C such that G = (Idg, Z)z.

The following statement for information sets is true.

Theorem 4.2.2 Let T be an information set and G = (Idg, Z)z the correspond-
ing systematic generator matriz. Then IT' = (Z\{\}) U {u} is an information
set iff Zy, =1

Proof. Since G = (ldi, Z)z, we have

Gu = Z)\“u + Z Zi“uGi-
i€Z\{\}

Columns indexed by 7 are linearly independent, therefore G, and (G;)icz\ (1}
are linearly independent iff Z , = 1. m
Now we will describe the algorithms by Leon, Stern, and Canteaut and Chabaud.

4.2.1 Leon

In [32], J. S. Leon proposed a probabilistic algorithm for computing mini-
mum weights of large linear error-correcting codes. This algorithm can also
be adapted for computing codewords of minimum weight in a linear code.

In this paper, we will present a version of the algorithm which is slightly
different from version presented by Leon in [32]. This version was presented by
Chabaud in [10].

The input of the algorithm is a generator matrix G, the weight ¢, and two
additional integers p and [which control the runtime and the success probability
of the algorithm. The algorithm returns a codeword of weight ¢ or fails. The
algorithm executes the following steps.

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 27

Step 1: Randomly choose an information set Z and apply a Gaussian elimina-
tion in order to obtain a systematic generator matrix G* = (ldg, Z)z.

Step 2: Randomly choose a set £ C A\Z consisting of [elements.

Step 3: For each linear combination A of p or fewer rows of matrix Gf .
compute wt(Azyz)-

Step 4: If wt(Azyz) < p check whether the same linear combination applied
to matrix G* has weight ¢. If that is the case, then return the last linear
combination. If there is no linear combination which fulfills the above
condition, then the algorithm fails.

Next, we will analyze the algorithm. Thereby we assume that zeros and ones in
the codewords are distributed almost uniformly.

At first, we will determine the success probability. It depends on favorable
choices of Z and £. Assume we have a codeword e with wt(e) = ¢. Fix p,l € Z,
then the following conditions lead to favorable choices of Z and L:

ICNa |I| =k, L GN\Iv |L| =1, Wt(eIUL) <p.
Therefore, Leon’s algorithm succeeds with probability:

2 () (5ly)
Prlalgorithm succeeds] = Z %
j=1 (k+l)

Next, we will estimate the expected work factor of the algorithm.

e The Gaussian elimination performed in step 1 requires on the average
k2

= (n — ££1) bit operations.

e Step 3 requires 3.7_, (’]”) (— 1) additions of I-bit words.

by 6]

e Since in step 4, condition wt(Azy.) < pis true approximately Zé.’:l (]. o

p—j (1
times. The algorithm requires E?:l (’;) (G- 1)2373() additions of n-bit
words.

Therefore, the expected work factor of Leon’s attack against McEliece cryp-
tosystem is

(13)

(i >§(n_ By 430 (8 (- 1)+ 3 Y0 ()
k+1 ?:1 (;) (ki;—tj) .

To minimize the work factor, in [10] the parameters of Leon’s attack are chosen
to be p =3 and | ~ k + log,(n).

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 28

Algorithm 4.2.1 LEON-LWCW

Input: k x n generator matrix G, a positive integers ¢, p, and [.
Output: A codeword of weight ¢

N =1{0,...,n—1}

while true do

/* Step 1 */
I=0P=0
for i =1to k do
Randomly choose r € N\Z; Z =Z U {r}
Randomly choose ¢ € {1,...,k}\P such that G,. =1; P =P U{c}
/* Eliminate all 1’s in column ¢ */
for j =1to k do
if j #r and G;. =1 then
G; = G; — Gy, where G, is the z-th row of G

/* now we have G = (ldg, Z)z */

/* Step 2 */
Randomly choose £ C M'\Z such that |£] =

/* Steps 3 and 4 */
for all linear combinations A of p rows of Gz do
if wt(Azyuz) < p then
Construct ¢ from G by taking the same rows as in A
if wt(c)=t then
return(c)

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 29

4.2.2 Stern

In this section, we will present a slightly modified algorithm from [48]. We apply
our algorithm to a generator matrix of a code instead of a parity check matrix
as presented by Stern.

On input of a generator matrix G and three integers ¢, p and [the algorithm
returns a codeword of length ¢ or fails. The additional parameters p and [
allow us to control the runtime and the success probability of the algorithm.
Thus, knowing that there exist a codeword, we can repeat the algorithm until
it succeeds.

The algorithm is based on the following idea. It randomly splits G into two
sub-matrices which consist of rows of matrix G. In each matrix, the algorithm
computes all linear combinations of p rows and checks whether certain parts of
these linear combinations are equal. If they are equal, then the algorithm checks
whether the weight of remaining parts is equal ¢. In this case the algorithm
succeeds.

The algorithm performs the following five steps:

Step 1: Randomly choose an information set Z and apply a Gaussian elimina-
tion in order to obtain a systematic generator matrix G* = (ldg, Z)z.

Step 2: Randomly spit Z into two subsets 7; and Z;. Each element of 7 is
added either to Z; or to Z, with probability 1/2. This causes a splitting
of the rows of Z in Zz,. and Zz,.

Step 3: Randomly choose a set £ C A'\Z consisting of | elements.

Step 4: For each linear combination A (resp. B) of p rows of matrix Zz,. (resp.
Z1,.) compute A, (resp. Br).

Step 5: For each pair (A, B) with Az = B, check whether wt(A+B) = t—2p.
If that is the case, then return vector e consisting of a linear combination
of rows of G*, where the same rows as in A + B are taken. If there is no
pair which fulfills the above conditions, then the algorithm fails.

We will analyze the algorithm. At first, we will determine the probability it
succeeds. It depends on choices of Z, Z;, Z», and £. Assume we have a codeword
e with wt(e) = t. Fix p,l € Z, then we have the following conditions:

1. |Z| = k and wt(ez) = 2p,
2. I, CZ, wt(er,) = p, and Iy = T\ Ty,
3. LeN\Z, |L] =1, wt(ep\z) =t — 2p, and wt(es) = 0.

These conditions implicate the probabilities of choosing such sets Z, Z;, Z,, and

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 30

L which yield to the given codeword e.
(5p) ({Z2))
(%)
4pr

(nfkflt+2p)

L
(")

The probability of success of Stern’s algorithm is the product of the above

probabilities. Thus, we have

Pr[of choosing a favorable 7] =

Prlof choosing a favorable 7;] =

Pr[of choosing a favorable £] =

Pr[the algorithm succeeds] = Pr[of choosing a favorable Z]-
Pr[of choosing a favorable Z;]- (14)
Prlof choosing a favorable £].

Next, we will estimate the expected work factor.

e The Gaussian elimination performed in step 1 requires on the average

%(n — k1) bit operations.

k/2

4) bit operations.

e Step 4 requires on the average 21p(

e In step 5 we assume that the distribution of values of A, (resp. B.) is
roughly uniform. Then, any bit vector of dimension [is hit by approxi-
mately (%2)/2! elements of A (resp. B). It follows, that step 5 requires

2
approximately 2(n — k) (%2) /2! bit operations.

Thus, Stern’s algorithm requires on average

2lpk*(n — k)(n — %) (kf) /2! (15)

bit operations.
By combining the results of (14) and (15), we conclude that the expected
work factor of Stern’s attack against McEliece cryptosystem is

1 pk2(n — k) (n — 1) (/) ("74) (1)

25 (27) (1) (kk_}i,) () (16)

4.2.3 Canteaut and Chabaud

As mentioned above, Stern’s algorithm has to be repeated very often in order
to decrypt successfully. Each repetition performs in the first step a Gaussian

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 31

Algorithm 4.2.2 STERN-LWCW

Input: k x n generator matrix G, a positive integers ¢, p, and [.
Output: A codeword of weight ¢

N =H0,...,n—1}

while true do

/* Step 1 */
I=0;P=0
for i =1to k do
Randomly choose r € N\Z; Z =T U {r}
Randomly choose ¢ € {1,...,k}\P such that G, =1; P =P U{c}
/* Eliminate all 1’s in column ¢ */
for j =1 to k do
if j #r and Gj. =1 then
G; = Gj — G, where G, is the z-th row of G

/* now we have G = (Idg, Z)z */

/* Step 2 */
Randomly split Z into Z; and 7,

/% Step 3 */
Randomly choose £ C M'\Z such that |£] =

/* Steps 4 and 5 */
for all linear combinations A of p rows of Z7, do
store (A, A, index of rows) in a hash table T
for all linear combinations B of p rows of Zz, do
if there exists (Bz, A, index of rows) € T and
Wt((A + B)N\(IUL)) =t- 2p then
Construct ¢ from G by taking the same rows as in A + B
return(c)

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 32

elimination which is very time consuming. In [8] the authors suggest another
strategy for this step. Based on theorem 4.2.2, they suggest to choose a new
information set not randomly but by modifying only one element in the old one.
The complexity of this new step is approximately k(n — k)/2 binary operations
instead of k%(n — L) in Stern’s algorithm.

The precise analyze of the algorithm CC-LWCW can be found in [8, 9].
Here we will present only the results. The algorithm is analyzed via modeling
by a Markov chain. For this purpose we need a random variable X; which
represent the ith iteration of the algorithm and corresponds to the number
of non-zero bits of cipher text ¢ in Z. X; takes one of the values of the set
E=({1,...,t1\{2p}) U{(2p)s, (2p) r} The set of success states is S = {(2p)s}.
The set of failure states is F = £\S

Theorem 4.2.3 The following results for the algorithm CC-LWCW are true:

1. The average number of elementary operations performed in each while-
iteration s

k/2

() s () 2) 25

where S is the size of a computer word (= 32 or 64).

2. Let mo(u) = Pr[Xo = ul], Py = PriX; =v/X,—1 = u], Q = (Pu)uver,
and R = (I-Q)~. Then the expectation of the number of while-iterations

N is
E(N) = Z WO(U’) ZRU,U

ueF vEF

3. Suppose the number of codewords of weight t is A; (Note, that Ay =1 in
our attack). Then the overall work factor of the algorithm is

0 E(N)

Wy = =20

(17)

The exact values of the entries of the matrix P and a more detailed analysis
may be found e.g. in [9]. To get a approximate work factor, one can replace the
k? (n — £fL)-term in equation (16) by k(n — k)/2.

4.3 Statistical Decoding

This attack was presented by A Kh. Al Jabri in [25]. It is based on the idea
that vectors from the dual space of a binary code which are not orthogonal
to the ciphertext reveal some information on the error positions. This attack
needs an algorithm which finds a sufficient number of vectors of the dual code of
certain weight. It is not clear what the running time of such a search would be,
since the problem of finding the desired set of vectors is connected to Problem

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem

33

Algorithm 4.2.3 CC-LWCW

Input: k x n generator matrix G, a positive integers ¢, p, and [.
Output: A codeword of weight ¢

N =1{0,...,n—1}
/* Step 1 */
I=0;P=10

fori=1to k do
Randomly choose r € N\Z; Z =Z U {r}
Randomly choose ¢ € {1,...,k}\P such that G, =1; P =P U {c}
/* Eliminate all 1’s in column ¢ */
for j =1to k do
if j #r and G =1 then
G; = G; — G, where G, is the z-th row of G

/* now we have G = (ld;, Z) */

while true do
/* Step 2 */
Randomly split 7 into Z; and Z, with |Z;| = ||Z]/2]

/* Step 3 */
Randomly choose £ C M'\Z such that |£] =

/* Steps 4 and 5 */
for all linear combinations A of p rows of Zz, do
store (Az, A, index of rows) in a hash table T
for all linear combinations B of p rows of Zz, do
if there exists (Bz, A, index of rows) € T and
Wt((A + B)N\(IUL)) =t— 2p then
Construct ¢ from G by taking the same rows as in A + B
return(c)

/* New step 1 */
Randomly choose A € T
Find unique r such that G,y =1
Randomly choose p € M\Z, such that Z, , =1
T = (Z\{A}) U {u}
/* Update Z appropriate to new Z */
for : =1to k do

if r#¢and G;, =1 then

G; = G; — G,., where G, is the z-th row of G

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 34

1.2.4 (SUBSPACE WEIGHTS). Further we know little about the true minimum
distance of the dual code (see e.g. [12]).

Let H,, be a set of vectors of weight w of the dual space of the (n, k, 2t + 1)
linear binary code G with generator Matrix G. Let y be the sum of a codeword
uG € G and an error vector e with weight at most ¢t. A Jh. Al Jabri points out,
that for randomly generated codes the probability that a value of 1 appears in
the i-th position of h € #,, with yh” = 1 depends on i being an erroneous
position in the vector y. Let p be the probability that h; = 1 and ¢ is an
erroneous position, and g be the probability that h; = 1 and ¢ is a non-erroneous
position. Then we have

_ Tmoaa)) S (o) ()
= ,q =
S aa () (0=) S aad () (=)
for all h satisfying that yh” = 1.

The idea for statistical decoding is quite similar to the one of iterative decod-
ing, see [14]. Tt consists in estimating the probability that h; = 1 and yhT =1
for each position ¢ considering different vectors h. Unlike at iterative decoding
we do not determine a single error position, but try to determine an informa-
tion set of non-error positions. If for example p > ¢, then we assume that 7 is
a non-error position if the relative frequency estimate is lower then a certain
bound. Once we have found a non-erroneous information set by modifying the
bound, we try to correct the errors.

We can recover u using algorithm 4.3.1 if #H,, is properly chosen. Note
that for s € {1,---,n} an (non-)error position the value v;/v} with vJ :=

Y heH. (yhT mod 2) is the relative frequency estimate for p (¢ respectively).
The mean value of v; is pvy, and its variance is 0 = p(p — 1)vy. The sets Iy
and I are introduced to cover the cases where p < g or p > gq.

Algorithm 4.3.1 STATDEC
Input: H,,y.
Output: u, the information vector.

V= hen. (yhT mod 2) heZzm™

choose I; = {positions of the k largest entries of v} s.t. G.7, is invertible.
choose I> = {positions of the k£ smalles entries of v} s.t. Gy, is invertible.
u; = y11G311

Uz = YIzGE;

if weight(u;G®y) <t then

u = u;
else
u= uy

The work factor for algorithm 4.3.1 is
O (n - [Hw| + 2k + kn)

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 35

McEliece parameters | w Ip —q| [Hw| | ()27F | Workfactor
(2™, k,d=2t+1) STATDEC
(1024, 524,101) 137 0.2-1077 251 2525 201

(1024, 524,101) 153 0.21-10°8 258 294 208

(2048, 1278, 141) 363 0.41-10"1 | 2% 296.9 2107
(65536, 65392, 9) 32000 | 0.17-10"13 | 293 21097 2109

Table 1: STATDEC for example parameter sets

binary operations having computed the set?,, in advance. The author of [25]
claims that the latter can be done e.g. by the methods of [8], which is to be
doubted (compare [39] and [14]).

The difference between p and g is very small for large codes, so we need a large
set H,, to distinguish the relative frequency estimates for p and ¢ respectively.
Al Jabri’s initial analysis of the size of H,, needed for error correction seems to
be too optimistic. A more realistic bound seems to be

|H.w| = 5.4p(1 — p) (18)

1
(p—q)?
from [39], which is about a factor 2'* larger than Al Jabri’s original bound
(compare as well [14]).

It is obvious, that a set H,, of the desired size will not even exist if w is chosen
to small. Goppa codes, BCH codes and GRS codes have a weight distribution
“close” to the expected weight distribution of a random codes, which is the
binomial distribution [25]. Consequently, we get the following condition for #,,:

M| < (”)2—’“.
w

Table 1 shows some example sizes to attack McEliece this way, where the
work factor refers to the computational costs after having computed the set
H.,.- One can see, that the McEliece cryptosystem resists this kind of attack for
all parameter sets secure against CC-LWCW. Further, for all parameter sets
proposed, STATDEC has no advantage over CC-LWCW. However, so far there
is no algorithm known, which performs the precomputation efficiently.

In [39], a improved version of STATDEC is proposed, but the author con-
cludes, that this improvement is not sufficient to attack the McEliece Cryptosys-
tem by statistical decoding due to the large amount of precomputation needed.
The authors of [14] conclude, that for iterative decoding a smaller set H,, as for
the initial STATDEC is sufficient as well. However, the size of #,, needed is still
very large and in consequence it is infeasible to compute H,, by the existing
methods.

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 36

4.4 Lattice Attacks

In [6], the authors suggest to apply the low density algorithm from [29] to break
Niederreiter cryptosystem. In this section we give an idea of this attack and
explain why this attack doesn’t work with Niederreiter/McEliece cryptosystems
based on binary Goppa codes.

The attack proceeds as follows. Given a parity check matrix H € IF‘Z}X(
of a Goppa code and cipher text ¢ = mH, where m is a message, i.e. wt(m) = ¢
(see section 1.4). Let L be the lattice generated by the row vectors in the matrix

n—=k)

rH

Q _ Idn+1 WT—
0 | qrid,, g

where Id; is the identity matrix of dimension s and r is an integer. The vector
m* = (my,...,m,,—1,0,...,0) is a vector in the lattice and has at most ¢ + 1
nonzero entries. If » > ¢, then the authors claim that m* is a shortest vector in
the lattice. So by finding this vector we can determine the corresponding plain
text.

Unfortunately, this is not true for fields of characteristic 2. The reason
for this failure is that m* isn’t the shortest vector for ¢ = 2. The shortest
vectors are 2ey,...,2e,11, where e; = (0,...,0,1,0,...,0). These vectors can

i—1
be obtained by taking the first (resp. second, etc.) row twice and erase the last
(n — k) elements in the vector by taking appreciate rows from the sub-matrix
grld,_r. Since these vectors have nothing to do with original message m, this
attack doesn’t work with the Niederreiter cryptosystem based on binary Goppa
codes.

5 Attacks infeasible with CCA2 Conversions

The attacks outlined in the following aim at revealing partial information about
the message sent, or the error vector used for encryption in the McEliece case.
Thus they are not stand alone attacks, i.e. they cannot be used to recover the
plaintext completely or to get the private keys, but they provide ways to reduce
the system size and thus the complexity of consecutive attacks.

One thing all attacks dealt with in this section have in common is that they
can be avoided completely by suitable conversions for the original McEliece cryp-
tosystem [27]. Thus the attacks are mentioned here mostly for completeness’
sake and to underline the importance for using one of the proposed conversions,
some of which we present later.

5.1 Taking advantage of partially known plaintexts

An attacker for the McEliece cryptosystem may use known bits of a sent mes-
sage to recover the whole plaintext. More precisely, the partial knowledge of

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 37

the originally sent message corresponds to a reduction in the cryptosystems
parameters.

Suppose an adversary knows the target plaintext bits mz for an index set
T c{1,2,...,k}. Denote with 7 the complement of Z in {1,2,...,k}. Then the
adversary may try to recover m s using the following reduction:

mG =mzsG.z ®myG. 7.
Therefore, we have

cdHmzG.r = ij.]EBZ
¢ =msG 7Dz

An analogous reduction can be achieved for the Niederreiter scheme. All attacks
described in the previous section, that do snot use the particular structure of
the code can be applied to try and solve this equation for m . In particular,
this includes the Generalized Information-Set-Decoding attack and the Finding-
Low-Weight-Codeword attack. (Note that their success is no longer guaranteed
as we do not know wether G.s contains an Information Set, which is needed in
both cases.) However, the computational cost for those attacks can be critically
reduced as k drops to |7 |.

5.2 Taking advantage of known relations between mes-
sages

An adversary for the McEliece scheme may use the relation between two en-

crypted messages to determine error bits [5]. This attack cannot be adapted to

the Niederreiter cryptosystem. Let m;, ms be two messages related by A, e.g.
A(m;, my) = m; & ms. Then

cCi DCy D A(ml,mg) =7z D Z».
Zero bits on the left hand side of this equation imply

1=z = z2g

Z1|k (&) Zz|k =0=
0= 21| = Z2[s-
Since the weight of the error vectors z;,zs is small, the first case is highly
unlikely:
t

2
Prl=zlr=2zr)=|—)] .

(=21 =zal) = 1)
This enables an adversary to efficiently guess error bits.

A special case is the message-resend attack where the attacker can recover
z1 ®zy =c1 D co.

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 38

5.3 Reaction Attack

This attack is a weaker version of an adaptively chosen cipher text attack, in
that it does not require any decryptions, but only depends on the observation
of the receiver’s reaction on potential ciphertexts [27]. This attack again aims
at determining error bits and is therefore only applicable to the McEliece cryp-
tosystem.

An adversary may intercept ciphertexts, change a few bits, and watch the
reaction of the designated receiver on these modified ciphertexts. Sending mod-
fications of an authentic ciphertext amounts to adding further error bits. If the
receiver cannot decode (reaction: repeat request), the corresponding bits were
not in error originally. This may enable a Generalized Information-Set-Decoding
attack, for example.

The probability to need more than k rounds before hitting an error position
is

5.4 Malleability

Adding codewords, i.e. rows of G to a ciphertext yields another valid ciphertext.
Therefore, the original McEliece cryptosystem does not satisfy non-malleability.
Note that this is no problem in the Niederreiter case, as there is no known
relation that may be used to create new decodable syndromes from old ones.

6 Conversions achieving CCA2-Security

Suppose an adversary who wants to recover a message from its ciphertext only,
has access to a decryption oracle. He may not query the oracle on the target
ciphertext. Apart from that, the oracle provides him with ciphertext-plaintext
pairs of his choice. A cryptoystem is secure against adaptive chosen ciphertext
attacks (CCA2 secure) if such attacker has no advantage in deciphering a given
ciphertext. Tt is indistinguishable in the CCA2-model if the attacker has no
advantage in determining for a given ciphertext and two plaintexts which of
them was encrypted.

In [27] Kobara and Imai review two generic conversion. One was origi-
nally presented by Pointcheval [41] and the other by Fujisaki and Okamoto [15].
Both conversions were designed to achieve CCA2 security for a restricted class
of public key cryptosystems. Kobara and Imai show, that these conversions can
successfully be applied to the McEliece cryptosystem.

Furthermore they and propose three conversion schemes specifically tailored for
the McEliece cryptosystem. To explain these conversions, we introduce the fol-
lowing notation:

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 39

ryr Random numbers

Conv Bijective conversion of any number in Z/Z(}) to the corresponding
error vector of length n

H Cryptographic hash function, outputting bit-strings of length log, (7)

R Cryptographically secure pseudo random number generator from fixed
length seeds

& McEliece encryption function, taking as first argument the message to
be encrypted and as second one the error vector: £(m,z) =c¢

D McEliece decryption function: D(c) = (m, z)

MSB,(m) The n rightmost bits of m.
LSB,(m) The n leftmost bits of m.

6.1 Pointcheval’s Generic Conversion

A function f: X xY — Z, (z,y) — z is partially trapdoor one-way (PTOWF)
if it is impossible to recover z or y from their image 2z alone, but the knowledge
of secret enables a partial inversion, i.e. finding z from z. Pointcheval [41]
demonstrated how any PTOWF can be converted to a public-key cryptosystem
that is indistinguishable against CCA2.

The McEliece cryptosystem draws is security from the assumption that its
primitive is PTOWF: The function (m,z) — £(m, z) can be inverted to recover
m iff the private key, i.e. the generator matrix of the underlying Goppa code,
is known.

Algorithm 6.1.1 Pointcheval’s generic conversion — Encryption

Input: Random r, r’ and the (possibly padded) message m.
Output: A McEliece-based cipher c.

z = H(m|r)
z = Conv(z)
c1 =&(r',z)
= R(r)®(m||7‘)

¢ = (c1le2)

6.2 Fujisaki-Okamoto’s Generic Conversion

Fujisaki and Okamoto propose hybrid encryption that merges a symmetric en-
cryption scheme which is secure in the Find-Guess model, with an asymmet-
ric One-Way-Encryption scheme which is sufficiently probabilistic, to obtain a
public-key cryptosystem which is indistinguishable against CCA2. See [15] for
more details. The adaptation of Kobara and Imai to the McEliece primitive uses
one-time padding with random numbers for the symmetric part, and McEliece

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 40

Algorithm 6.1.2 Pointcheval’s generic conversion — Decryption
Input: A cipher ¢ and the corresponding McEliece decryption function D
Output: The target plaintext m

¢1 = MSBy,(c)

C2 = LSBLen(m)+Len(r) (C)

(r',2) = D(c1)

(m||r) = c2 ® R(r')

if ¢; = &(r', Conv(H (m]||r))) then
return m

else
reject c

encryption for the asymmetric one.

Algorithm 6.2.1 Fujisaki-Okamoto’s generic conversion — Encryption

Input: Random r, and the (possibly padded) message m.
Output: A McEliece-based cipher c.

z = H(r|[m)

z = Conv(z)
C1 = E(T',Z)
c2=R(r)®m

c = (c1]|e2)

6.3 Kobara-Imai’s Specific Conversions

Kobara and Imai also present three conversions of their own. Their main concern
is to decrease data overhead introduced by the previously mentioned schemes.
One of the corresponding conversions is given below.

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 41

Algorithm 6.2.2 Fujisaki-Okamoto’s generic conversion — Decryption

Input: A cipher ¢, and the corresponding McEliece decryption function D
Output: The target plaintext m

¢ = MSB,(c)

Cy = LSBLen(m) (C)

(r,z) = D(cy)

m=cy ® R(r)

if ¢; = £(r, Conv(H (r||m))) then
return m

else
reject c

Algorithm 6.3.1 Kobara-Imai’s Specific Conversion ¥ — Encryption

Input: Random r, a predetermined public constant const and the (possibly
padded) message m.

Output: A McEliece-based cipher c.

Note: It is assumed that the message m is prepared so that Len(m) >
log, | (7)) + k — Len(const) — Len(r) where n, k and t are the parameters used
for McEliece encryption.

c1 = R(r) @ (ml|const)

co=1r® H(cy)

cs = LSBj5q, (7))+4(2llc1)

Cq = LSBk(Cg)

Cy = MSBL(ZL)J ((33)

z = Conv(cs)

if Len(cz||c1) — [log, (})] — & > 0 then
Ce = MSBLen(cz||c1)*UOgg (?)J,k(c2||cl)
¢ = (co||€(cq,2))

else

c=E&(cq,2)

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 42

Algorithm 6.3.2 Kobara-Imai’s Specific Conversion v — Decryption
Input: A cipher c, the bit length of the random number used in encryption
Len(r) and the corresponding McEliece decryption function D
Output: The target plaintext m

Ce = MSBLen(c)fn(c)

(Again, cg may be empty)

(cs,2) = D(LSBy(c))

¢s = Conv™'(z)

C2 = MSBLen(r) (C6||C5||C4)

C1 = LSBLen(c)fLen(r) (C6||C5||C4)
7’, =cy D H(Cl)

(m]|const') = (c1) ® R(r')

if const’ = const then

return m
else
reject c
Conversions and Data Redundancy”
Conversion Dataredundancy = Ciphertext size - Plaintext size
(n,k) (1024, 524) | (2048,1608) | (2048, 1278)
t 50 40 70
Pointch. Len(r) +n 1184 2308 2308
Fujisaki n 1024 2048 2048
Okamoto
Kobara n + Len(const||r) 536 480 655
Imai —log,| (3)] — &
Original n—=k 500 440 770
McEliece

“We follow the suggestion of Kobara and Imai and use Len(r) = Len(Const) = 160.

Kobara and Imai claim to achieve a reduction in data redundancy even below
the values for the original McEliece PKCS for large parameters. We point out
that this is only true if the message is prepared in such a way that

Len(m) > log, | <?>J + k — Len(r) — Len(const).

Nonetheless, the cut in data overhead is remarkable. Their main result concern-
ing security is the following:

Theorem 6.3.1 Breaking indistinguishability in the CCA2 model using any of

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 43

the conversions presented above, is as hard as breaking the original McFEliece
public key system.

Furthermore, the Known-Partial-Plaintext Attack, the Related Message At-
tack, the Reaction Attack and the Malleability Attack, all become impossible,
since relations among plaintexts do no longer result in relations among cipher-
texts. Already the simple hashing of messages before encryption prevents this.

7 Other cryptographic applications

In this section we want to look into digital signature and identification schemes
using error correcting codes. Up to now there has been little research concerning
the development of secure and efficient digital signatures based on the McEliece
Cryptosystem. In fact McEliece claimed in his original paper “the decryption
algorithm [...] cannot be used to produce unforgeable ’signatures’.” [37]

The first ideas to derive digital signatures from error-correcting codes have
been presented by Xinmei in [52]. Xinmei’s suggestion uses a McEliece-type
encryption but was attacked and modified by Harn and Wang [22] and finally
broken by Alabbadi and Wicker in 1992 [1].

One year later, J. Stern proposed an identification scheme based on syndrome
decoding [49] but acknowledged himself that it could not be modified to an
efficient signature scheme.

Alabbadi and Wicker reviewed the chances to design digital signature schemes
based on error-correcting codes in [2] but did not find feasible models. Their
own proposal was successfully attacked by Stern [50].

Thus all attempts to create secure and reasonably efficient digital signatures
on the basis of the McEliece cryptosystem have failed until the paper of Courtois,
Finiasz and Sendrier [11].

7.1 Stern’s identification scheme

Stern’s identification scheme is based on the Niederreiter cryptosystem.

Let H be a (n — k) x n matrix common to all users. Chosen randomly,
Stern claims that H generally will provide a parity check matrix for a code with
good error correcting capability. Every user receives an n bit private key s of
prescribed weight p.

e Public key H, Hs' =i, p
e Private key s

The security of the scheme relies on the difficulty of the syndrome decoding
problem, that is on the difficulty of determining the preimage s of i = Hs?.
Without the secret key, an adversary has two altenatives to deceive the verifier:

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 44

Protocol 7.1.1 Stern’s Identification scheme
Prover Verifier

Choose random n-bit vector y and ran-
dom permutation o, to compute

a=(0,Hy') co=0(y) cs=0(y ®s)

Send commitments for (¢, ¢z, c3)

Send random request b € {0, 1,2}

Ifb=0 = reveal y,o
Ifb=1 = reveal y ® s,0
If b=2 = reveal o(y),0(s)

If b=0 = check c1, ¢

If b=1 = check ¢;,c3 and
Hy'=H(y'®s") @i

If b=2 = check c¢3,c3 and
w(o(s) =p

1. He can work with a random s’ of weight p instead of the secret key. He
will succeed if he is asked b € {0,2} but in case b = 1 he will hardly be
able to produce the correct c1,c3 since Hs' # Hs = 1.

2. He can choose s’ from the set of all preimages of : under H, i.e. s €
H~1(;*). This time he will fail to answer the request b = 2 since w(s') # p.

Thus the attacker has chances 2/3 to deceive the verifier in any round. The
identification scheme of Stern has not been broken. Unfortunately, it can not
be adapted to obtain an efficient signature scheme. The standard method to
convert the identification procedure into a prodedure for signing, is to replace
verifier-queries by values suitably derived from the message to be signed. This
leads to a blow-up of each (hashed) plaintext bit to 2n signature bits and is
therefore hardly applicable here.

7.2 CFS Signature Scheme

The only working signature scheme based on the McEliece, or rather on the
Niederreiter encryption was presented by Courtois, Finiasz and Sendrier in [11].
Analogously to the results on the original McEliece PKCS, the security of the
CFS scheme can be reduced to the Bounded Distance Decoding Problem. The
Bounded Distance Decoding Problem (BD) is the Syndrome Decoding Problem
for codes with known minimal distance. This extra knowledge allows the decoder
to restrict his search to codewords within the given distance to the received one.
Some believe this problem not to be NP-complete, as determining the minimum
distance of a linear code in itself already is NP-complete, and this additional
information is given in the BD case.

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 45

Let the underlying code be a (n, k)-Goppa code, with error-correcting capa-
bility ¢, where n = 2™ and k = n — tm, for some integer m. Denote with G the
generator matrix and with H the parity check matrix, respectively.

The idea of the CFS algorithm is to repeatedly hash the document aug-
mented by a counter, until the ouptput is a decodable syndrome. The signer
uses his secret key to determine the corresponding error-vector. Together with
the current value of the counter, this error vector will then serve as signature.

The error-vector length n can be reduced considerably, taking into account
that only ¢ of its bits are nonzero. With the parameters suggested by Cour-
tois, Finiasz and Sendrier the number of possible error-vectors is approximately
given by (}) = (2;6) ~ 21255 50 that a 126-bit counter suffices to address each
of them. We need the following ingredients:

h Public hash function

I Functions that assigns each word of weight ¢ and length n a unique
index in the set of all these words.
T McEliece trapdoor function, outputting the error-vector for a given

decodable syndrome
H The public parity check matrix.

Algorithm 7.2.1 CFS digital signature — Signing
Input: h,I,7,r and the document to be signed d
Output: A CFS-signature s.

z = h(d)
choose a r-bit Vector 7 at random
s = h(z|[t)

while s is not decodable do
choose a r-bit Vector i at random
s = h(z||%)

e=TI(s)

s = (I(e)l]2)

The average number of attempts needed to reach a decodable syndrome can
be estimated by comparing the total number of syndromes N;,; to the number
of correctable syndromes Nyec.

Mot — 2n—k — 2mt — nt

‘L in nt
Ndec:Z(t> N?

0
Ndec
Mot

Thus each syndrome has a probabillity of % to be decodable. The CFS scheme

El= Y

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 46

Algorithm 7.2.2 CFS signature scheme — Verification

Input: A signature s = (I(e)||), the document d and the McEliece public
key H
Output: Is the signature valid?

e=1"'(I(e))
s1 = H(e?)
sz = h(h(d)|i)
if s; = s, then
accept s
else
reject s

Parameter Sizes and Costs

parameters n 215 216 217

t 10 9 10 8 9 10
size _public | k(n—k)/(8- | 058 | L12 | Li2 | 2.38 | 2.38 | 2.38
key in MB 10242)
signature N7m® 970 [257 |20 [2%% | 238 | 2@
cost
verification t column 218 219 219 220 220 220
cost operations?
signature log, (n?) 150 144 | 160 136 153 170
length

needs about ¢! iterations, producing signatures of length log,(r(7})) log,(n?).
Thus, r has to be be larger than logs(t!).

Attacking the CFS signature scheme via the birthday paradoxon is the best
method so far, which is infeasible (compare [11]).

8 Performance and Parameters

The main reason why McEliece received little attention in practice is because
of the huge key sizes in comparison to RSA. Like RSA, its security remains
unbroken in its original form. It is as old as RSA, but less well studied. In the
following we review some aspects of implementation, performance and (good)
choice of parameters.

As we have already mentioned, the key sizes are quite big in comparison to
RSA. However, the McEliece Cryptosystem has a much faster en- and decryp-
tion. We to take a look at the running times first and analyze the key sizes
afterwards.

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 47

8.1 Performance of En-/Decryption and Key Generation

The encryption of a messgage in the original McEliece scheme takes about
E/2-n+t

binary operations plus the time to generate the error vector. For decryption,
the decryption algorithm gets faster if we store some matrices in advance, which
only depend on the private key. We return to the notations of section 1.3 and
1.4 respectively.

Theorem 8.1.1 The decryption of a ciphertext of a McEliece instance gener-
ated by a (n = 2™, k,d) binary irreducible Goppa code requires O (ntm2) binary
operations.

Proof. Let J C {1,---,n} with |J| = k and G invertible. We may compute
mSG @ zP~! in n - m binary Operations and the corresponding syndrome in
n-(n — k) more. Applying the algorithm of Patterson ([40], algorithm 2.3.1) we
need O (n -t-m?) binary operations to identify the vector zP~' and n more to
get mSG. Having computed (SG;) * we need only further k2 binary operations
to recover the message m. m

The time needed to encrypt a message with Niederreiter depends on the
method of representing the message by a appropriate plaintext e of length n
and weight ¢. This could be done in several ways. We just want to point out,
that the distribution of the support of e should be (almost) uniform to avoid
correct guessing of the positions of the zeros (compare [42]). For example one
could use methods derived from [51] or simple enumeration of all possible error
vectors. The time of decryption depends on the time to recover the plaintext
and the time to reconstruct the original message from that plaintext.

Theorem 8.1.2 Recovering the plaintext from a ciphertext of a Niederreiter
instance generated by a (n,k,d) Goppa code requires O (nth) binary opera-
tions.

Proof. The proof is analogeous to the one of the theorem above. m

When generating an instance of the McEliece Cryptosystem with n = 2™ we
suppose that we already know a polynomial F' € F, [X] s.t. (Fs [X]) /F = Fom.
From [19] we know that the number of monic irreducible polynomials of degree
t over Fom is bigger than (2™% — 1) /t. Thus the probability of getting an irre-
ducible polynomial by choosing a random one of degree ¢ with leading coefficient
0 is larger than 1/¢t. To check the irreducibility requires O (752m2 + t3m) op-
erations [24]. Having found an irreducible generator polynomial g we need 2™
evaluations of (g (z)) " and n (¢t — 1) multiplications in Fom to generate the par-
ity check matrix. For the McEliece cryptosystem we need a Gaussian elimination
(O((n—k)?) binary operations) at that point, to compute the generator matrix.

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 48

Next we have to generate the permutation and the scramble matrix and multiply
them with the generator matrix which can be done in O (k?n + n?) (McEliece)
and O ((n — k)?>n + n?) (Niederreiter) binary operations respectively. Together
with the time necessary to invert SG; and M, this leads to the following theorem:

Theorem 8.1.3 The running time (in binary operations) to generate a key
pair for the McEliece cryptsystem is O (k2n +n2+83n—k)+(n— k)3) and
O ((n — k)?>n +n? + t*(n — k)) for the Niederreiter cryptosystem.

8.2 Key Sizes

The method of storing the private key offers some variants. First we would
want to store the Goppa polynomial and the generator polynomial of Fam and
additionally the check matrix H. Second it would be better to store M~ or
(SG.;)™", to enhance the performance of decryption. The private key stored
that way has the size of

(n—kn+n-—k+1+2-logyn) +k*>+n-logyn
bits for McEliece Cryptosystem and
(n—k+1+2-log,n)+ (n—k)? +n-log,n

for the Niederreiter version. Alternatively, the holder of the secret key can omit
storing the matrix H, as it is not needed to compute the syndrome of the received
ciphertext. However, this would decrease the speed of decryption.

To store the public key requires n -k bits for the McEliece cryptosystem. For
the CCA2-secure variants of the McEliece PKC it is possible to give the public
generator matrix G in its systematic form. If we choose the first & columns of
G to be the identity matrix, then we can describe the public key by only giving
the last (n — k) columns of G, called the redundant part. This requires

k-(n—k)

bits. The same is true for the the Niederreiter PKC. Table 2 shows the perfor-
mance of the original McEliece PKC for some example parameters.

8.3 Choice of Parameters

Unfortunately, there is no simple criterion for the choice of ¢ with respect to n.
One should try to make it as difficult as possible to attack the cryptosystem
using the known attacks. For the sample parameter sets from Table 2, Table 3
shows the theoretical work factors for the McEliece cryptosystem (the CCA2-
secure variants and the original one). In comparison, Table 4 gives the estimated
work factors for the RSA cryptosystem.

As one can observe from the tables, today the best attack against McEliece’s
cryptosystem is CC-LWCW (Algorithm 4.2.3), which is STERN-LWCW with

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 49
McEliece Size public Workfactor
system parameters key in bytes (binary operations)
(n,k,d=2t+1) plain CCA2-secure | encryption | decryption
(1024, 524,101) 67,072 32,750 | 218 222
(2048, 1608, 81) 411,648 88,440 | 2205 223
(2048,1278,141) 327,168 123,008 | 220 224
(2048, 1025, 187) 262,400 131,072 | 220 2245
(4096, 2056, 341) 1,052,672 524,280 | 222 226.5

Table 2: Performance of the McEliece PKC

McEliece Workfactor (binary operations)

system parameters | GISD LEON-LWCW CC-LWCW 3
(n,k,d=2t+1) p=2 p=3,1l=m p=21=2m—1
(1024, 524, 101) 270 269 262

(2048, 1608, 81) 2110 2107 298

(2048, 1278, 141) 2120 9118 9110

(2048, 1025, 187) 2115 g2 2108

(4096, 2056, 341) 2195 2193 2184

Table 3: Attacking the McEliece PKC

3 Approximation without determining the exact value of the number of expected iterations.
The exact evaluation uses a Markov chain and thus no closed formula is available (see [9]).

System Size Workfactor (binary operations)
public key | en- de- best
in bytes cryption | cryption | attack ®
RSA 1024-bit Modulus 256 | 230 230 279
RSA 2048-bit Modulus 512 | 233 233 295
RSA 4096-bit Modulus 1024 | 236 236 2115

5

Table 4: Performance of the RSA PKC

this is the NFS attack for factoring the RSA modulus, see [31].

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 50

Markov chain improvement. CC-LWCW has a polynomial space complexity
and its work factor may be approximated by

0(n3)27t10g2(17k/n),

if ¢ is small and k/n is not too close to 1 (compare [43]). Since n = 2™ and
k = n — tm, N. Sendrier concludes, that the maximum degree of security is
obtained for an information rate k/n ~ 1 — 1/ exp(1). We omitted to consider
the statistical decoding attack on the McEliece Cryptosystem because of serious
doubts regarding the assumptions made by the author of [25], compare section
4.3.

9 Conclusion

After more than twenty years of research the McEliece PKC cryptosystem slowly
comes to the fore as a practical alternative to RSA in applications where long
term security is needed. There are no known classical or quantum computer
attacks on McEliece’s cryptosystem, which have sub-exponential running time.
Despite the lack of efficient attacks on McEliece’s proposal, none of the cryp-
tographic schemes based on coding theory is proven to be as secure as some
classic problem of coding theory. Nevertheless, a key size of 123KB seems to be
secure until the year 2041.

The fast increasing amount of storage space on small devices like USB To-
kens, PDAs and mobile phones would even allow an application of the McEliece
PKC nowadays. We believe, that the McEliece PKC might be used within the
next decades, even if no quantum computer is available. The advantage of code
based cryptography lies in the faster en- and decryption, which helps to reduce
the battery drain of cryptographic applications on mobile devices.

Another interesting property of code based cryptography is the fact, that one
can build a complete infrastructure from it. Identification schemes, signature
schemes and even random number generators as well as hash functions are
available.

Acknowledgment

We would like to thank Prof. Dr. Johannes Buchmann for inspiring for this work
and Dr. Ulrich Vollmer for his constant support and most helpful comments.

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 51

References

[1] M. Alabbadi and S.B. Wicker. Security of Xinmei digital signature scheme.
FElectronics Letters, 29(9):890-891, 1992.

[2] M. Alabbadi and S.B. Wicker. A digital signature scheme based on linear
error-correcting block codes. In ASTACRYPT ’94, volume LNCS 917, pages
238-248, Springer 1995.

[3] D. Augot, M. Finiasz, and N.Sendrier. A family of fast syndrome based
cryptographic hash functions. In Proc. of Mycrypt 2005, volume 3715 of
LNCS, pages 64-83, 2005.

[4] E. Berlekamp, R. McEliece, and H. van Tilborg. On the inherent in-
tractability of certain coding problems. IEEFE Transactions on Information
Theory, 24(3):384-386, 1978.

[5] T. Berson. Failure of the McEliece public-key cryptosystem under message-
resend and related-message attack. In Proceedings of CRYPTO, volume
1294 of Lecture Notes in Computer Science, pages 213-220. Springer Verlag,
1997.

[6] E.F. Brickell and A.M. Odlyzko. Cryptanalysis: A survey of recent results.
In Proc. of the IEEE, volume 76(5), pages 578-593, 1988.

[7] A. Canteaut and F. Chabaud. Improvements of the attacks on cryptosys-
tems based on error-correcting codes. Rapport interne du Departement
Mathematiques et Informatique, LIENS-95-21, 1995.

[8] A. Canteaut and F. Chabaut. A new algorithm for finding minimum-weight
words in a linear code: application to primitive narrow-sense BCH-codes
of length 511. IEEE Transactions on Information Theory, 44(1):367-378,
1998.

[9] A. Canteaut and N. Sendrier. Cryptanalysis of the original McEliece cryp-
tosystem. In Advances in Cryptology - ASIACRYPT ’98 Proceedings, pages
187-199. Springer-Verlag, 1998.

[10] Florent Chabaud. On the security of some cryptosystems based on error-
correcting codes. Lecture Notes in Computer Science, 950:131-139, 1995.

[11] N. Courtois, M. Finiasz, and N.Sendrier. How to achieve a McEliece-based
digital signature scheme. In Advances in Cryptology - ASTACRYPT 2001,
volume 2248, pages 157-174. Springer-Verlag, 2001.

[12] F. Levy dit Vehel and S. Litsyn. Parameters of goppa codes revisited. IEEE
Transactions on Information Theory, 43(6):1811-1819, 1997.

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 52

[13] J.-B. Fischer and J. Stern. An eficient pseudo-random generator provably
as secure as syndrome decoding. In Ueli M. Maurer, editor, Advances in
Cryptology - EUROCRYPT ’96, volume 1070 of LNCS, pages 245-255.
Springer-Verlag, 1996.

[14] M. Fossorier, H. Imai, and K. Kobara. Modeling bit flipping decoding based
on non orthogonal check sums and application to iterative decoding attack
of McEliece crypto-system. In Proc. of 200/ IEEE International Symposium
on Information Theory and its Applications, Parma, Italy, October 2004.

[15] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and sym-
metric encryption schemes. In Proc. of CRYPTO, volume 547 of LNCS,
pages 535-554. Springer Verlag, 1999.

[16] E.M. Gabidulin, A.V. Ourivski, B. Honary, and B. Ammar. Reducible
rank codes and their applications to cryptography. IEEE Transactions on
Information Theory, 49(12):3289-3293, 2003.

[17] E.M. Gabidulin, A.V. Paramonov, and O.V. Tretjakov. Ideals over a non-
commutative ring and their applications to cryptography. In Proc. Euro-
crypt ’91, volume 547 of LNCS. Springer Verlag, 1991.

[18] P. Gaborit. Shorter keys for code based cryptography. In Proc. of WCC
2005, pages 81-90, 2005.

[19] S. Gao and D. Panario. Tests and constructions of irreducible polynomials
over finite fields. Foundations of Computational Mathematics, pages 346—
361, 1997.

[20] K. Gibson. Equivalent Goppa codes and trapdoors to McEliece’s public
key cryptosystem. In D. W. Davies, editor, Advances in Cryptology - Eu-
rocrypt’91, volume 547 of LNCS, pages 517-521. Springer Verlag, 1991.

[21] V. D. Goppa. A new class of linear correcting codes. Problems of Informa-
tion Transmission, 6 (3):207 — 212, 1970.

[22] L. Harn and D.-C. Wang. Cryptanalysis and modification of digital signa-
ture scheme based on error-correcting codes. Electronics Letters, 28(2):157—
159, 1992.

[23] Heise and Quattrocchi. Informations- und Codierungstheorie. Springer
Berlin Heidelberg, 3 edition, 1995.

[24] TEEE 1363-2000: Standard specifications for public key cryptography, 2000.

[25] A. Al Jabri. A statistical decoding algorithm for general linear block
codes. In Cryptography and Coding 2001, volume 2260 of LNCS, pages
1-8. Springer Verlag, 2001.

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 53

[26] H. Janwa and O. Moreno. McEliece public key cryptosystems using
algebraic-geometric codes. Designes, Codes and Cryptography, 8:293-307,
1996.

[27] K. Kobara and H. Imai. Semantically secure McEliece public-key cryptosys-
tems - conversions for McEliece PKC. In Practice and Theory in Public
Key Cryptography - PKC ’01 Proceedings. Springer Verlag, 2001.

[28] K. Kobara and H. Imai. On the one-wayness against chosen-plaintext at-
tacks of the Loidreau’s modified McEliece PKC. IEEFE Transactions on
Information Theory, 49, No. 12:3160-3168, 2003.

[29] J. C. Lagarias and Andrew M. Odlyzko. Solving low-density subset sum
problems. J. ACM, 32(1):229-246, 1985.

[30] P.J. Lee and E.F. Brickell. An observation on the security of McEliece’s
public key cryptosystem. In Advances in Cryptology-EUROCRYPT’88,
volume 330 of LNCS, pages 275-280. Springer Verlag, 1989.
http://dsns.csie.nctu.edu.tw/research/crypto/HTML/PDF/E88/275.PDF.

[31] Arjen K. Lenstra and Eric R. Verheul. Selecting cryptographic key sizes.
Journal of Cryptology: the journal of the International Association for
Cryptologic Research, 14(4):255-293, 2001.

[32] J.S. Leon. A probabilistic algorithm for computing minimum weights of
large error-correcting codes. IEFE Transactions on Information Theory,
34(5):1354-1359, 1988.

[33] Y.X. Li, R.H. Deng, and X.M. Wang. the equivalence of McEliece’s and
Niederreiter’s public-key cryptosystems. IEEE Transactions on Informa-
tion Theory, Vol. 40, pp. 271-273, 1994.

[34] R. Lidl and H. Niederreiter. Introduction to finite fields and their applica-
tions. Cambridge University Press, 2 edition, 1986.

[35] P. Loidreau and N. Sendrier. Weak keys in the McEliece public-key cryp-
tosystem. IEEE Transactions on Information Theory, 47, No. 3:1207 -1211,
March 2001.

[36] F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correctiong
Codes. North-Holland Amsterdam, 7 edition, 1992.

[37] R.J. McEliece. A public key cryptosystem based on algebraic coding theory.
DSN progress report, 42-44:114-116, 1978.

[38] R. Overbeck. A new structural attack for GPT and variants. In Proc. of
Mycrypt 2005, volume 3715 of LNCS, pages 50-63. Springer Verlag, 2005.

[39] R. Overbeck. Statistical decoding revisited. In Proc. of ACISP 2006, vol-
ume 4058 of LNCS, pages 283-294. Springer Verlag, 2006. to appear.

D. Engelbert, R. Overbeck and A. Schmidt: The McEliece Cryptosystem 54

[40] N. Patterson. Algebraic decoding of Goppa codes. IEEE Trans.
Info. Theory, 21:203-207, 1975.

[41] D. Pointcheval. Chosen-ciphertext security for any one-way cryptosystem.
In Proc. of PKC, volume 1751 of LNCS, pages 129-146. Springer Verlag,
2000.

[42] V. C. Jr. Rocha, V.C. JR Da Rocha, and D.L. Macedo. Cryptanalysis of
Krouk’s public-key cipher. FElectronics Letters, 32 (14):1279 — 1280, 1996.

[43] N. Sendrier. On the security of the McEliece public-key cryptosystem.
In M. Blaum, P.G. Farrell, and H. van Tilborg, editors, Proceedings of
Workshop honoring Prof. Bob McEliece on his 60th birthday, pages 141—
163. Kluwer, 2002.

[44] N. Sendrier. Finding the permutation between equivalent linear codes: the
support splitting algorithm. IEEFE Transactions on Information Theory,
46:1193-1203, Jul 2000.

[45] N. Sendrier. On the dimension of the hull. SIAM Journal on Discrete
Mathematics, 10(2):282-293, May 1997.

[46] V.M. Sidelnikov. A public-key cryptosystem based on binary Reed-Muller
codes. Discrete Mathematics and Applications, 4 No. 3, 1994.

[47] V.M. Sidelnikov and S.O. Shestakov. On insecurity of cryptosystems based
on generalized Reed-Solomon codes. Discrete Mathematics and Applica-
tions, 2, No. 4:439-444, 1992.

[48] J. Stern. A method for finding codewords of small weight. Coding Theory
and Applications, 388:106—133, 1989.

[49] J. Stern. A new identification scheme based on syndrome decoding. In Ad-
vances in Cryptology - CRYPTO’93, volume 773 of LNCS. Springer Verlag,
1994.

[50] J. Stern. Can one design a signature scheme based on error-correcting
codes. In ASIACRYPT ’9/4, volume 917 of LNCS, pages 424-426, 1995.

[61] K. Tanaka und S.Uchiyama T.Okamoto. Quantum public key cryptosys-
tems. In Proc. Of CRYPTO 2000, LNCS, volume 1880, pages 147-165,
2000. Springer-Verlag.

[52] W. Xinmei. Digital signature scheme based on error-correcting codes. Elec-
tronics Letters, 26(13):898-899, 1990.

