

Post-quantum cryptosystems based on coding theory

Paulo S. L. M. Barreto (SFI Walton Fellow)

Motivation

Essentials of coding theory

□Coding-based PQC

Current challenges... and solutions

© Paulo S. L. M. Barreto 2009

USP/DCU

Motivation

□ The overwhelming majority of deployed cryptosystems rest on only two security assumptions:

- Integer Factorization (IFP): RSA, BBS.
- Discrete Logarithm (DLP): ECC, PBC.

Shor's quantum algorithm can efficiently solve the IFP and the DLP.

Post-quantum cryptosystems Entirely classical systems: plug-in replacements for RSA/ECC. avoid expensive (sometimes non-existing) purely quantum technologies. Security assumptions related to NPcomplete/NP-hard problems, apparently beyond the capabilities of quantum computers.

Coding-based cryptosystems

Many cryptographic primitives supported:

- encryption,
- digital signatures and identification,
- identity-based signatures and identification,
- oblivious transfer...
- Efficiency and simplicity:
 - O(n²) encryption/decryption.
 - plain arithmetic with matrices and vectors.
- Drawback: very large keys.

Linear codes

□ A linear [n, k]-code C over \mathbb{K} is a k-dimensional vector subspace of \mathbb{K}^n .

□ A code may be defined by either

- a *generator* matrix $G \in \mathbb{K}^{k \times n}$, or
- a parity-check matrix $H \in \mathbb{K}^{(n-k) \times n}$,
- $HG^{\mathsf{T}} = O_{\prime}$

• $\mathcal{C} = \{ uG \in \mathbb{K}^n \mid u \in \mathbb{K}^k \} = \{ v \in \mathbb{K}^n \mid Hv^T = o^T \}.$

□ The vector *s* such that $Hv^{T} = s^{T}$ is called the *syndrome* of *v*.

□ Hard problems involving codes?

General decoding (GDP)

□ **Input:** positive integers n, k, t; a finite field \mathbb{F}_q ; a linear [n, k]-code $\mathcal{C} \subseteq (\mathbb{F}_q)^n$ defined by a generator matrix $G \in (\mathbb{F}_q)^{k \times n}$; a vector $c \in (\mathbb{F}_q)^n$.

□ **Question:** is there a vector $m \in (\mathbb{F}_q)^k$ s.t. e = c - mG has weight $w(e) \le t$?

□ NP-complete!

Search: find such a vector *m*.

Syndrome decoding (SDP)

Input: positive integers n, k, t; a finite field F_q; a linear [n, k]-code C ⊆ (F_q)ⁿ defined by a parity-check matrix H ∈ (F_q)^{r×n} with r = n - k; a vector s ∈ (F_q)^r.
Question: is there a vector e ∈ (F_q)ⁿ of weight w(e) ≤ t s.t. He^T = s^T?
NP-complete!
Search: find such a vector e.

Alternant and Goppa codes

□ Let $q = p^d$ for some d > 0, and p a prime power. □ An *alternant code* A(L, D) over \mathbb{F}_p is defined by:

- a sequence $L \in (\mathbb{F}_q)^n$ of distinct elements with $n \leq p$;
- a sequence $D \in (\mathbb{F}_q)^n$ of nonzero elements;
- easily decodable (t/2 errors) syndromes from $H = T_p(vdm_t(L) \text{ diag}(D))$.
- □ A Goppa code $\Gamma(L, g)$ over \mathbb{F}_p is an alternant code where:
 - $L \in (\mathbb{F}_q)^n$ satisfies $g(L) \neq 0$, and D = (1/g(L)) for some monic polynomial $g(x) \in \mathbb{F}_q[x]$ of degree t;
 - good error correction capability (all t design errors) in characteristic 2.

McEliece cryptosystem

□ Key generation:

- Choose a "secure", uniformly random [n, k]*t*-error correcting alternant code $\mathcal{A}(L, D)$ over \mathbb{F}_p , with $L, D \in (\mathbb{F}_q)^n$.
- Compute for $\mathcal{A}(L, D)$ a systematic generator matrix $G \in (\mathbb{F}_p)^{k \times n}$.

• Set
$$K_{priv} = (L, D), K_{pub} = (G, t)$$
.

McEliece cryptosystem

□ Encryption of a plaintext $m \in (\mathbb{F}_p)^k$:

Choose a uniformly random *t*-error vector $e \in (\mathbb{F}_p)^n$ and compute $c = mG + e \in (\mathbb{F}_p)^n$ (IND-CCA2 variant via e.g. Fujisaki-Okamoto).

□ Decryption of a ciphertext $c \in (\mathbb{F}_p)^n$:

- Use the trapdoor to obtain the usual alternant paritycheck matrix H (or equivalent).
- Compute the syndrome $s^{T} \leftarrow Hc^{T} = He^{T}$ and decode it to obtain the error vector e.
- Read *m* directly from the first *k* components of *c e*.

CFS signatures

□ System setup:

- Choose m, t, and $n \approx 2^m$.
- Choose a hash function $\mathcal{H}: \{0, 1\}^* \times \mathbb{N} \to (\mathbb{F}_2)^{n-k}$.

□ Key generation:

• choose a uniformly random [n, k] *t*-error correcting binary alternant code $\mathcal{A}(L, D)$.

compute for it a systematic parity-check matrix H.

• $K_{\text{private}} = (L, D); K_{\text{public}} = (H, t).$

□ Observation:

- Let H_0 be the trapdoor parity-check matrix for A(L, D), so that $H_0 = MH$ for some nonsingular matrix M.
- If $s^{T} = He^{T}$ for some *t*-error vector *e*, then $s_0^{T} = Ms^{T} = MHe^{T} = H_0e^{T}$ is decodable using the trapdoor.

CFS signatures □ Signing a message *m*: find $c \in \mathbb{N}$ such that, for $s \leftarrow \mathcal{H}(m, c)$ and s_0^{T} $\leftarrow Ms^{\mathsf{T}}, s_0$ is decodable with the trapdoor H_0 , and decode s_0 into a *t*-error vector *e*, i.e. s_0^T $= H_0 e^{T}$ and hence $s^{T} = H e^{T}$. the signature is (e, c). \Box Verifying a signature (e, c): • compute $s^{\mathsf{T}} \leftarrow He^{\mathsf{T}}$. • accept iff w(e) = t and $s = \mathcal{H}(m, c)$.

CFS signatures

Density of decodable syndromes: 1/t!
Signature length (permutation ranking) is ≈ lg(n^t/t!) + lg(t!) = t lg n.
Public key is huge: mtn bits.
Recommendation for security level ≈ 2⁸⁰:
original: m = 16, t = 9, n = 2¹⁶, signature length = 144 bits, key size = 1152 KiB.
updated: m = 15, t = 12, n = 2¹⁵, signature length = 180 bits, key size = 720 KiB.

Reducing the key size

Replace a generic code by a permuted and shortened [W 2006] subfield subcode of a quasi-cyclic [BCGO 2009] or quasi-dyadic [MB 2009] code.

 $\Box O(n)$ instead of $O(n^2)$ space.

 $\Box O(n \lg n)$ instead of $O(n^2)$ time.

© Paulo S. L. M. Barreto 2009

Cauchy matrices

- □ A matrix $H \in \mathbb{K}^{t \times n}$ over a field \mathbb{K} is called a *Cauchy* matrix iff $H_{ij} = 1/(z_i - L_j)$ for disjoint sequences $z \in \mathbb{K}^t$ and $L \in \mathbb{K}^n$ of distinct elements.
- Property: any Goppa code where g(x) is squarefree admits a parity-check matrix in Cauchy form [TZ 1975].
- Compact representation, but:
 - code structure is apparent,
 - usual tricks to hide it (permute, scale, puncture, systematize, etc) also destroy the Cauchy structure.

Dyadic matrices

□ Let *r* be a power of 2. A matrix $H \in \mathcal{R}^{r \times r}$ over a ring \mathcal{R} is called *dyadic* iff $H_{ij} = h_{i \oplus j}$ for some vector $h \in \mathcal{R}^r$.

□ If *A* and *B* are dyadic of order *r*, then

$$C = \left[\begin{array}{cc} A & B \\ B & A \end{array} \right]$$

is dyadic of order 2r.

$$H_{ij} = h_{i \oplus j}$$

© Paulo S. L. M. Barreto 2009

USP/DCU

Dyadic matrices

- Dyadic matrices form a subring of $\mathcal{R}^{r \times r}$ (commutative if \mathcal{R} is commutative).
- Compact representation: O(r) rather than $O(r^2)$ space.
- Efficient arithmetic: multiplication in time O(r lg r) time via fast Walsh-Hadamard transform, inversion in time O(r) in characteristic 2.
- **Idea:** find a dyadic Cauchy matrix.

Dyadic codes

□ **Theorem:** a dyadic Cauchy matrix is only possible over *binary* fields, and any suitable $h \in (\mathbb{F}_q)^n$ satisfies

$$\frac{1}{h_{i\oplus j}} = \frac{1}{h_i} + \frac{1}{h_j} + \frac{1}{h_0}$$

with $z_i = 1/h_i + \omega$, $L_j = 1/h_j - 1/h_0 + \omega$ for arbitrary ω , and $H_{ij} = h_{i \oplus j} = 1/(z_i - L_j)$.

Constructing dyadic codes

□ Choose distinct h_0 and h_i with $i = 2^u$ for $0 \le u < \lceil \lg n \rceil$ uniformly at random from \mathbb{F}_q , then set

$$h_{i+j} \leftarrow \frac{1}{\frac{1}{h_i} + \frac{1}{h_j} + \frac{1}{h_0}}$$

for 0 < j < i (so that $i + j = i \oplus j$). Complexity: O(n).

© Paulo S. L. M. Barreto 2009

Quasi-dyadic codes

□ Structure hiding:

- choose a long code over \mathbb{F}_q ,
- blockwise shorten the code,
- permute dyadic block columns,
- dyadic-permute (and \mathbb{F}_p -scale) individual blocks,
- take a \mathbb{F}_p subfield subcode of the result.

 \Box Quasi-dyadic matrices: $(\mathbb{F}_p^{t \times t})^{d \times \ell}$.

□ Quasi-dyadic codes over \mathbb{F}_{2^8} from trapdoor codes over $\mathbb{F}_{2^{16}}$, with *t*×*t* dyadic submatrices:

level	n	k	t	size	generic	shrink	RSA	NTRU
2 ⁸⁰	512	256	128	4096 bits	57 KiB	112	1024 bits	—
2 ¹¹²	640	384	128	6144 bits	128 KiB	170	2048 bits	4411–7249 bits
2 ¹²⁸	768	512	128	8192 bits	188 KiB	188	3072 bits	4939–8371 bits
2 ¹⁹²	1280	768	256	12288 bits	511 KiB	340	7680 bits	7447–11957 bits
2 ²⁵⁶	1536	1024	256	16384 bits	937 KiB	468	15360 bits	11957–16489 bits

Efficient processing

Preliminary timings against RSA (times in ms):

level	RSA	QD	RSA	QD	RSA	QD
	keygen	keygen	encrypt	encrypt	decrypt	decrypt
2 ⁸⁰	563	17.2	0.431	0.817	15.61	3.685
2 ¹¹²	1971	18.7	1.548	1.233	110.34	4.463
2 ¹²⁸	4998	20.5	3.467	1.575	349.91	5.261
2 ¹⁹²	628183	47.6	22.320	4.695	5094.10	17.783
2 ²⁵⁶	—	54.8	—	6.353	_	21.182

□ How about security?

Quasi-dyadic GDP/SDP

- Solve the GDP or the SDP for quasi-dyadic codes.
- □ **Theorem:** the QD-GDP and the QD-SDP are NP-complete.
- □ Caveat:
 - only constitutes trapdoor one-way functions!
 - average-case complexity?
 - structural attacks?

QD-CFS signatures

□ The maximum length of regular QD codes is n = 2^{m-1} even without puncturing.
 □ Difficulty to get n ≈ 2^m: the full sequences z and L (length n) are no longer disjoint ⇒ 1/(z_i - L_j) undefined.

■ Binary QD codes: density of decodable syndromes $\approx 1/(2^t t!)$, a factor 2^t worse than irreducible codes – but better than 1/(2t)!, and up to a factor *t* shorter.

© Paulo S. L. M. Barreto 2009

QD-CFS signatures

Yet only a single block of t rows and a subset of the columns are needed to define a shortened QD code!

Solution: modify the dyadic construction to allow for 2^{m-1} < n < 2^m by admiting undefined entries when they are unused.

■ Binary QD codes with minimal puncturing: density of decodable syndromes $\approx 1/(c \ t!)$ for $n \approx 2^m/c^{1/t}$.

QD-CFS signatures

Suggestion for security level ≈ 2⁸⁰: m = 15, t = 12, n = 2¹⁵, signature length = 180 bits, key size = 180 KiB (vs. 720 KiB for a generic, irreducible Goppa code).
 Structural security: work in progress.

but puncturing seems very effective in thwarting such attacks.

Summary

Coding-based cryptography is a purely classical, post-quantum alternative to quantum cryptography.

- Several pros over traditional systems (quantum immunity, efficient operations), main con already solved (shorter keys).
- □ New functionalities still a challenge (key agreement, IBE, formal security, dyadic lattices) ⇒ good research opportunity ☺

Questions?

Thank You!

© Paulo S. L. M. Barreto 2009

USP/DCU

Appendix

© Paulo S. L. M. Barreto 2009

USP/DCU

31

"Hey, wait, I know McEliece, and this does not look quite like it!"

Observations:

- A secret, random L is equivalent to a public, fixed L coupled to a secret, random permutation matrix $P \in (\mathbb{F}_p)^{k \times k}$, with $\mathcal{A}(LP, DP)$ as the effective code.
- If G_0 is a generator for $\mathcal{A}(L, D)$ when L is public and fixed, and S is the matrix that puts G_0P in systematic form, then $G = SG_0P$ is a systematic generator of $\mathcal{A}(LP, DP)$, as desired.

McEliece-Fujisaki-Okamoto: Setup

Random oracle (message authentication code) *H*: (𝔽_p)^k × {0, 1}* → ℤ/sℤ, with s = (n choose t) (p − 1)^t.
Unranking function *U*: ℤ/sℤ → (𝔽_p)ⁿ.
Ideal symmetric cipher *E*: (𝔽_p)^k × {0, 1}* → {0, 1}*.
Alternant decoding algorithm *D*: (𝔽_q)ⁿ × (𝔽_p)ⁿ → (𝔽_p)ⁿ → (𝔽_p)^k × (𝔽_p)ⁿ.

McEliece-Fujisaki-Okamoto: Encryption

□ Input:

• uniformly random symmetric key $r \in (\mathbb{F}_p)^k$;

■ message $m \in \{0, 1\}^*$.

Output:

• McEliece-FO ciphertext $c \in (\mathbb{F}_p)^n \times \{0, 1\}^*$.

□ Algorithm:

•
$$h \leftarrow \mathcal{H}(r, m)$$

•
$$e \leftarrow \mathcal{U}(h)$$

• $w \leftarrow rG + e$

•
$$d \leftarrow \mathcal{E}(r, m)$$

•
$$c \leftarrow (w, d)$$

McEliece-Fujisaki-Okamoto: Decryption

□ Input:

• McEliece-FO ciphertext c = (w, d).

□ Output:

■ message $m \in \{0, 1\}^*$, or rejection.

□ Algorithm:

- $(r, e) \leftarrow \mathcal{D}(L, D, w)$
- $\blacksquare m \leftarrow \mathcal{E}^{-1}(r, d)$
- $h \leftarrow \mathcal{H}(r, m)$

• $v \leftarrow \mathcal{U}(h)$

• accept $m \Leftrightarrow v = e$ and w = rG + e

CFS signatures

□ The number of possible hash values is $2^{n-k} = 2^{mt}$ ≈ n^t and the number of syndromes decodable to codewords of weight *t* is

$$\binom{n}{t} \approx \frac{n^t}{t!}$$

□ ... The probability of finding a codeword of weight t is $\approx 1/t!$, and the expected value of hash queries is $\approx t!$ assuming all t design errors can be corrected (only true for binary Goppa codes!).