
A Fast Deterministic Algorithm for Factoring Polynomials over Finite Fields ofSmall CharacteristicVictor ShoupComputer Sciences DepartmentUniversity of TorontoToronto, Ontario M5S 1A4AbstractWe present a new algorithm for factoring polynomials over �nite �elds. Our algorithm is deter-ministic, and its running time is \almost" quadratic when the characteristic is a small �xed prime.As such, our algorithm is asymptotically faster than previously known deterministic algorithms forfactoring polynomials over �nite �elds of small characteristic.Appeared in Proc. 1991 International Symposium on Symbolic and Algebraic Computation(ISSAC), pp. 14{21, 1991.

1

1. IntroductionConsider the problem of factoring a univariate polynomial f of degree n over the �nite �eld Fq,where q = pk and p is a small, �xed prime. We assume that Fq is represented as Fp(�), where� is the root of an irreducible polynomial over Fp of degree k. We present a new deterministicalgorithm for this problem whose asymptotic complexity is less than that of previous deterministicalgorithms.In discussing running times of algorithms, for expositional purposes we treat p as a constant inSections 1 and 2 of this paper; however, in Section 4 we will make explicit the dependence of ouralgorithm on p. Furthermore, we will use the \Soft-O" notation to suppress logarithmic factors inrunning time estimates: we say that g = ~O(h) i� for some constant c, g = O(h(log h)c).Besides the general factoring problem, we consider as a special case the equal degree factoringproblem, in which the input is a polynomial over Fq that is the product of m distinct monicirreducible factors, each of the same degree d. Setting d = 1, this includes as a special case the root�nding problem.We can now state our new results more precisely:1. We can solve the general factoring problem with a deterministic algorithm whose runningtime is ~O((nk)2).2. We can solve the equal degree factoring problem with a deterministic algorithm whose runningtime is ~O(m(dk)2).We briey compare our algorithm to other known algorithms. In the next section, this compar-ison is done in greater detail.In the case where k = 1, and we are factoring over the prime �eld Fp, the running time ~O(n2)was previously obtained by the algorithm of the present author in [13]. The method described inthat paper does not appear to generalize to large extensions of Fp.Using linear algebra techniques, the general factoring problem can be solved in time O((nk)!),where ! is the exponent of matrix multiplication (see [15]). Currently, the best value for ! is! � 2:376 [10]. In order to achieve our running time bounds, our algorithm avoids linear algebra.Our algorithm is actually a generalization of Berlekamp's trace algorithm for root �nding [3].This algorithm involves the computation of many trace functions; if computed separately, the costof computing these trace functions would be too much. To achieve our running time bounds, weemploy a new technique for computing several trace functions in not much more time than thatrequired to compute just one trace function.Finally, if probabilistic algorithms are allowed, then the running time bounds stated in Results 1and 2 above have already been obtained with the algorithms of Ben-Or [2] and Cantor/Zassenhaus[9]. The signi�cance of our results is that our algorithm is deterministic.2. OverviewIn this section, we outline the main ingredients of our algorithm, along the way comparing ouralgorithm with other known algorithms. We begin by summarizing some well-known facts aboutthe complexity of various arithmetic operations.By a ring R we shall always mean a commutative ring with unity, and by an R-operation, wemean addition, subtraction, or multiplication of two elements ofR. For a �eld F , by an F -operation,we mean addition, subtraction, multiplication, or division of two elements of F . We letM(t) denotethe number of R-operations required to compute the product of two degree t polynomials in R[X].2

It is shown in [8] that M(t) = O(t log t log log t). We quote the following well-known results; theproofs can be found, e.g., in [4].Theorem 2.1. Let R be a ring, and let F be a �eld.(1) Let f be a monic polynomial in R[X] of degree � t. Then with O(M(t)) R-operations wecan compute a degree t approximation to the multiplicative inverse of f in the ring of formalpower series over R.(2) Let f and g be polynomials in R[X] of degree � t and assume that g is monic. Then f mod gcan be computed using O(M(t)) R-operations.(3) Let f; g1; : : : ; gk be polynomials in R[X] such that deg f � t, deg g1 + � � � + deg gk � t,and the gi's are monic. Then f mod g1; : : : ; f mod gk can be computed using O(M(t) logk)R-operations.(4) Let f and g be polynomials in F [X] of degree � t. Then the greatest common divisor d of fand g can be computed using O(M(t) log t) F -operations. Moreover, polynomials a; b 2 F [X]of degree O(t) satisfying af + bg = d can be computed in the same time bound.(5) Let � 2 R. Then for any integer m > 0, �m can be computed using O(logm) multiplicationsin R.We can quickly reduce the general factoring problem to the equal degree factoring problem bya process called distinct degree factorization. Given a polynomial f of degree n, we construct poly-nomials f (1); : : : ; f (n) such that f (i) is the product of all the distinct monic irreducible polynomialsover Fq of degree i that divide f . This is accomplished by using the fact that the polynomialXqi �X is the product of all distinct monic irreducible polynomials whose degree divides i. Werefer the reader to [12] for details, and note that using fast algorithms for polynomial arithmetic,we can perform the distinct degree factorization process in time ~O((nk)2).We therefore assume that the polynomial f that we wish to factor is the product of m distinctmonic irreducible polynomials, each of degree d:f = f1 � � �fm:The degree of f is n =md.Consider the Fq-algebra R = Fq[X]=(f). Let � = (X mod f) be the image X in R. By thecomplexity results mentioned above, each Fq-operation can be performed in time ~O(k), and eachR-operation can be performed in time ~O(mdk).By the Chinese Remainder Theorem, for polynomials g 2 Fq[X] the map de�ned by(g mod f) 7! (g mod f1; : : : ; g mod fm)is an Fq-algebra isomorphism of R and the direct summMi=1 Fq[X]=(fi) �= mMi=1 Fqd :This isomorphism maps Fq onto the diagonal, i.e. for a 2 Fq, a 7! (a; : : :; a). For 1 � i � m let� 7! �(i) be the projection map of � 2 R onto the i-th summand R(i) = Fq[X]=(fi).We now isolate two well-known subalgebras of R. The relative Berlekamp subalgebra B consistsof all elements � 2 R such that �(i) 2 Fq for all 1 � i � m. The Berlekamp subalgebra A consists3

of all elements � 2 R such that �(i) 2 Fp for all 1 � i �m. The following inclusion diagram helpsto describe the situation. R�����B, -Fq A- ,FpA set S � B is called a relative separating set if for all 1 � i; j � m with i 6= j, there existsan element � 2 S such that �(i) 6= �(j). If S satis�es the further condition that S � A, then S issimply called a separating set.Separating sets are very useful in factoring polynomials if p is small. Consider two distinctirreducible factors fi and fj of f . If S is a separating set, then we know that for some � 2 S,�(i) 6= �(j). Say �(i) = a 2 Fp. Then if � = (g mod f), where g 2 Fq[X], then g � a is divisible byfi but not by fj . Therefore, given g, if we consider gcd(g��; f) for all � 2 Fp, we are guaranteed tosplit f into two factors, one divisible by fi, and the other by fj . If p is small (as we are assuming)and the size of S is not too large, we can use this idea to obtain an e�cient algorithm to completelyfactor f .The computation of a separating set turns out to be the bottleneck in deterministic factoringalgorithms, so we consider some of the known methods for this computation.The oldest method goes back to Berlekamp [3]. Any Fp-basis for A is clearly a separating set.Furthermore, A is easily seen to be the kernel of the Fp-linear map � 7! �p��. We can compute thematrix of this linear transformation with respect to the basis f���� : 0 � � < n; 0 � � < kg, andthen by diagonalizing this matrix we can obtain a basis for A. The total time for this computationis dominated by the time required to diagonalize a kn� kn matrix over Fp, which is O((nk)!).Our approach to computing a separating set begins by computing a relative separating set.One method for computing a relative separating set, which is described by Camion [6], runs asfollows. Let TR=B be the map that sends � 2 R to � + �q + � � �+ �qd�1 . So TR=B acts on R(i) asthe trace from Fqd down to Fq (and hence is a Fq-linear map from R onto B). In [6], it is shownthat the set fTR=B(��) : 0 � � < 2dg is a relative separating set.One application of TR=B requires O(dk) R-operations. The obvious method for computingthe elements in this relative separating set requires 2d such applications, and hence takes time~O(md3k2).Our method for constructing a relative separating set, described in [13], is the following. Con-sider the ring R[Y] of univariate polynomials overR. Let h = (Y ��)(Y��q) � � �(Y ��qd�1) 2 R[Y],and write h = h0 + h1Y + � � �hd�1Y d�1 +Y d. In [13] it is shown that the set S0 = fhi : 0 � i < dgis a relative separating set; this fact follows directly from the observation that h(j)i is the coe�cientof X i in fj .We can compute the powers �; �q; : : : ; �qd�1 with O(dk) R-operations, and then using a fastalgorithm for multiplying polynomials in R[Y], we can compute the coe�cients of h with ~O(d)R-operations. Thus, we can compute the elements of S0 in time ~O(m(dk)2).Generalizing the idea of Berlekamp's trace algorithm for root �nding [3], we can use a relative4

separating set S to construct a separating set S0 as follows. Let TB=A be the map that sends � 2 Rto �+�p+ � � �+�pk�1 . TB=A acts on B(i) as the trace from Fq down to Fp (and hence is a Fp-linearmap that maps B onto A). It can easily be shown that if S is a relative separating set, thenS0 = fTB=A(���) : 0 � � < k; � 2 Sg is a separating set; this is a direct consequence of the factthat for any pair of distinct elements a; b 2 Fq, there exists � with 0 � � < k such that the tracefrom Fq to Fp maps ��a and ��b onto distinct elements in Fp.We shall apply this construction to the relative separating set S0 described above to obtain aseparating set S1. An individual application of TB=A requires O(k) R-operations, and hence takestime ~O(mdk2). The obvious method for computing S1 requires dk such applications, and hencetakes time ~O(md2k3).We are now ready to describe the new idea in our algorithm. Suppose we have elements�0; : : : ; �t�1 and �0; : : : ; �t�1 in some ring R. In the next section we show (Theorem 3.4) that with~O(t) R-operations we can compute all of the generalized power sumss = t�1Xi=0 �si�i (s = 0; : : : ; t� 1):Now consider the problem of computing, for �xed � 2 S0, the quantities TB=A(���) for 0 �� < k. For 0 � i < k, let �i = �pi and �i = �pi . Then TB=A(���) is just the generalized powersum Pk�1i=0 ��i �i. We can clearly compute the �i's and �i's using O(k) R-operations, and then usingTheorem 3.4 we can compute the the generalized power sums using ~O(k) R-operations. Repeatingthis for each � 2 S0, we obtain S1 with ~O(dk) R-operations, and hence in time ~O(m(dk)2).Thus, the total time to compute the separating set S1 using our new approach is ~O(m(dk)2).We close this section with a brief description of how the probabilistic algorithms of Ben-Or andCantor/Zassenhaus achieve a ~O(m(dk)2) expected running time. Consider the map TR=A whichsends � 2 R to �+ �p + � � �+ �pdk�1 . One can easily show that if we choose �1; �2; � � � at randomfrom R, then the expected value of the least t such that the set fTR=A(�i) : 1 � i � tg is aseparating set is O(logm). Since the time required to compute TR=A once is ~O(m(dk)2), this leadsto an algorithm whose expected running time is ~O(m(dk)2).3. Computing generalized power sumsIn this section, we consider the following problem: given �0; : : : ; �t�1 and �0; : : : ; �t�1 in a ring R,compute the generalized power sumss = t�1Xi=0 �si�i (s = 0; : : : ; t� 1):We shall present an algorithm for this problem that requires O(M(t) log t) R-operations, andspace for O(t) elements in R. There are a couple of other methods in the literature for solving thisproblem, which we discuss at the end of this section.We will �rst need an algorithm for extending a linear recurrence sequence.Theorem 3.1. Let R be a commutative ring with unity. Suppose we are given elements c1; : : : ; ctand 0; : : : ; t�1 in R. For s � t let s be de�ned by the recurrences + c1s�1 + � � �+ cts�t = 0: (3:2)5

We can compute t; : : : ; 2t�1 using O(M(t)) R-operations.Proof. Let c0 = 1. We de�ne the following polynomials.G = tXj=0 cjXjU = t�1Xj=0 jXjV = t�1Xj=0 t+jXjWe then consider the products GU = 2t�1Xj=0 ujXjGV = 2t�1Xj=0 vjXjCalculating the coe�cients of these products, and using (3.2), one �nds thatut+j + vj = 0 (j = 0; : : : ; t� 1): (3:3)We can rewrite this as follows. Let GU = F0 +X tF1, where F0 and F1 are polynomials of degreeat most t� 1. Then we can rewrite (3.3) asGV � �F1 (mod X t):Let H be the multiplicative inverse of G in the ring of formal power series over R. Then we haveV � �HF1 (mod X t):Thus, to compute the coe�cients of V (which are the quantities we desire), we do the following:1. Compute a degree t polynomial approximation H� of H .2. Compute F1 by computing the product GU , and throwing away the low order t terms.3. Compute �H�F1, and throw away the high order n terms.Since each step of this algorithm uses O(M(t)) R-operations, so does the entire algorithm. 2We now come to our algorithm for computing generalized power sums.Theorem 3.4. LetR be a commutative ring with unity. Suppose we are given elements �0; : : : ; �t�1and �0; : : : ; �t�1 in R. For s � 0 let s = t�1Xi=0 �si�i:6

We can compute 0; : : : ; t�1 using O(M(t) log t) R-operations.Proof. We assume that t is a power of 2 (otherwise, pad with zeros). Consider the polynomialG = (1� �0X) � � �(1� �t�1X):Let G = tXj=0 cjXjand let ~G = tXj=0 ct�jXj = (X � �0) � � �(X � �t�1):Claim. For s � t, we have s + c1s�1 + � � �+ cts�t = 0:This claim can be seen as follows.tXj=0 cjs�j = tXj=0 cj t�1Xi=0 �s�ji �i (by de�nition)= t�1Xi=0 �s�ti �i tXj=0 cj�t�ji= t�1Xi=0 �s�ti �i ~G(�i)= 0 (since each �i is a zero of ~G)With this claim and Theorem 3.1, we see that given 0; : : : ; t�1, and given the coe�cients ofG, we can compute t; : : : ; 2t�1 using O(M(t)) R-operations.Consider the following recursive algorithm to compute generalized power sums. For convenience,the role of t is now played by 2t. The input is �0; : : : ; �2t�1 and �0; : : : ; �2t�1. The output iss = 2t�1Xi=0 �si�i (s = 0; : : : ; 2t� 1)and the coe�cients of the polynomialG = (1� �0X) � � �(1� �2t�1X):1. Divide the problem into two equal sized pieces, and recursively compute the following quan-tities:� 0s =Pt�1i=0 �si�i (s = 0; : : : ; t� 1)� the coe�cients of G0 = (1� �0X) � � �(1� �t�1X)� 00s =P2t�1i=t �si�i (s = 0; : : : ; t� 1)� the coe�cients of G00 = (1� �tX) � � �(1� �2t�1X)7

2. Extend the length t sequences 0s and 00s to the corresponding sequences of length 2t usingthe coe�cients of G0 and G00, and the algorithm of Theorem 3.1.3. For s = 0; : : : ; 2t� 1, set s = 0s + 00s , and compute the coe�cients of G = G0G00.The number of R-operations performed by this algorithm is determined by the recurrenceT (2t) = 2T (t) +O(M(t))T (1) = O(1);which has the solution T (t) = O(M(t) log t):2We can rephrase the problem of computing generalized power sums by saying that we want tocompute the matrix-vector product V Tx, where V is the Vandermonde matrix V = (�j�1i�1) and xis the column vector x = (�i�1).We mention two other methods for solving this problem. One is described in [7], where it isassumed that R is a �eld and that the �i's are distinct. It has the same time and space complexityas ours. This algorithm works by �rst computing y = V �1x, and then applying the Hankel matrixV TV to y. The use of this algorithm over an arbitrary ring R is hindered by the fact that itperforms several divisions by elements in R, and it is not clear that these can easily be avoided.There are general methods by which one can transform an algorithm for computing the matrix-vector product Ax into an algorithm with the same asymptotic running time for computing ATx[1, 11]. Since computing V x is known to take O(M(t) log t) R-operations, the same bound ap-plies to computing V Tx. The algorithms that result from these general transformations are quite\unnatural," and moreover, require space proportional to their running times.Either of these methods would have su�ced in proving the main result of this paper; however,our algorithm is still perhaps of interest in itself, since it avoids divisions, requires space for onlyO(t) R-elements, and has a fairly simple and natural description.4. Algorithmic DetailsIn this section we supply the remaining details of our factoring method. In analyzing the runningtime, we make explicit the dependence on p. Running times are measured in terms of Fp-operations.Our factoring algorithm proceeds as follows.First, we reduce the general factoring problem to the equal degree factoring problem by �rstperforming distinct degree factorization. This can be done with log p � ~O((nk)2) Fp-operations (see[12]). We therefore assume that f is the product of m distinct monic irreducible polynomials ofdegree d. All of the notation and terminology introduced in Section 2 is now in force.Second, we compute the separating set S1 described in Section 2. Using the methods describedthere, this takes log p � ~O(m(dk)2) Fp-operations.Third, we apply the following factorization procedure that takes as input the polynomial f anda corresponding separating set S. The output is the set of irreducible factors of f . We construct�ner and �ner partial factorizations U � Fq[X] consisting of monic polynomials with Qu2U u = f .Initially, U = ffg. 8

while jU j < m doChoose s 2 S, and then remove s from S� 0while Test(U; s) doRefine(U; s+ �)if p 6= 2 then Refine(U; (s+ �)(p�1)=2 � 1)� � + 1The factorization procedure makes use of two subroutines. The �rst is the operationRefine(U; v), which, given a partial factorization U and a polynomial v 2 Fq[X], replaces Uby the re�nement U 0 obtained in the following fashion: for each u 2 U , if gcd(u; v) is a trivialdivisor of u, put u in U 0; otherwise, put gcd(u; v) and u= gcd(u; v) in U 0. For polynomials v ofdegree less than n, we can perform the Refine operation using ~O(mdk) Fp-operations. The secondoperation is Test(U; v), which returns true if (v mod u) =2 Fp for some u 2 U , and false otherwise.The value of Test(U; v) indicates whether v is of any use in obtaining a further re�nement of U .This can also be computed using ~O(mdk) Fp-operations.To analyze the running time of this algorithm, for an odd prime p we de�ne the quantity B(p)as follows: let � be the quadratic character on Fp, and as a and b range over all pairs of distinctelements in Fp, let B(p) be the maximum value of B such that �(a+ �) = �(b+ �) for 0 � � < B.For p = 2, de�ne B(p) = 1.Since we are using the separating set S1, which contains dk elements, the number of Fp-operations used by our factorization procedure is easily seen to be bounded bylog p � ~O(m(dk)2) +B(p) log p � ~O(mdk �min(m; dk)):In [13] it was shown that B(p) = O(p1=2 log p). It was subsequently shown in [14] that B(p) =O(p1=2).Putting all of this together, we can state our results as follows:Theorem 4.1.1. We can solve the general factoring problem usinglog p � ~O((nk)2) + p1=2 log p � ~O((nk)3=2)Fp-operations.2. We can solve the equal degree factoring problem usinglog p � ~O(m(dk)2) + p1=2 log p � ~O(mdk �min(m; dk))Fp-operations.Remark. Several authors have fallaciously drawn the inference that the fact that the maximumnumber of consecutive quadratic residues or nonresidues mod p is O(p1=4 log p) (see [5]) implies thatpolynomials over a �nite �eld of characteristic p can be factored in time proportional to p1=4 timesa polynomial in the input size. The relevant quantity is not the number of consecutive quadraticresidues or nonresidues, but rather the quantity B(p) de�ned above; the author is not aware of anybounds on B(p) better that O(p1=2). Improving this bound is an important open problem.9

AcknowledgementsThe author would like to thank Alan Borodin, Mark Giesbrecht, Erich Kaltofen, and RomanSmolensky for valuable discussions.References[1] W. Baur and V. Strassen. The complexity of computing partial derivatives. TheoreticalComputer Science, 22:317{330, 1983.[2] M. Ben-Or. Probabilistic algorithms in �nite �elds. In 22nd Annual Symposium on Foundationsof Computer Science, pages 394{398, 1981.[3] E. R. Berlekamp. Factoring polynomials over large �nite �elds. Math. Comp., 24(111):713{735,1970.[4] A. Borodin and I. Munro. The Computational Complexity of Algebraic and Numeric Problems.American Elsevier, 1975.[5] D. A. Burgess. A note on the distribution of residues and non-residues. Jour. London Math.Soc., 38:253{256, 1963.[6] P. Camion. Improving an algorithm for factoring polynomials over a �nite �eld and construct-ing large irreducible polynomials. IEEE Trans. Inform. Theory, IT-29(3):378{ 385, 1983.[7] J. F. Canny, E. Kaltofen, and L. Yagati. Solving systems of non-linear polynomial equationsfaster. In Proc. ACM-SIGSAM Int. Symp. on Symbolic and Algebraic Computation, pages121{128, 1989.[8] D. G. Cantor and E. Kaltofen. Fast multiplication of polynomials over arbitrary rings. Tech-nical Report 87-35, Department of Computer Science, Rensselaer Polytechnic Institute, 1987.To appear, Acta. Inf.[9] D. G. Cantor and H. Zassenhaus. A new algorithm for factoring polynomials over �nite �elds.Math. Comp., 36(154):587{592, 1981.[10] D. Coppersmith and S. Winograd. Matrix multiplication via Behrend's method. In 19thAnnual ACM Symposium on Theory of Computing, pages 1{6, 1987.[11] M. Kaminski, D. G. Kirkpatrick, and N. H. Bshouty. Addition requirements for matrix andtransposed matrix products. Journal of Algorithms, 9:354{364, 1988.[12] R. T. Moenck. On the e�ciency of algorithms for polynomial factoring. Math. Comp.,31(137):235{250, 1977.[13] V. Shoup. On the deterministic complexity of factoring polynomials over �nite �elds. Inform.Process. Lett., 33(5):261{267, 1990.[14] I. E. Shparlinsky. On some questions in the theory of �nite �elds. Preprint, 1990.[15] J. von zur Gathen. Factoring polynomials and primitive elements for special primes. Theoret.Comput. Sci., 52:77{89, 1987. 10

