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1 Introduction

Digital signatures have become a key technology for making the Internet and other IT-
infrastructures secure. Digital signatures provide authenticity, integrity, and non-repudiation
of data. Digital signatures are widely used in identification and authentication protocols.
Therefore, the existence of secure digital signature algorithms is crucial for maintaining
IT-security.

The digital signature algorithms that are used in practice today are RSA [31], DSA [11],
and ECDSA [15]. They are not quantum immune since their security relies on the difficulty
of factoring large composite integers and computing discrete logarithms.

Hash-based digital signature schemes which are presented in this chapter offer a very
interesting alternative. Like any other digital signature scheme, hash-based digital sig-
nature schemes use a cryptographic hash function. Their security relies on the collision
resistance of that hash function. In fact, we will present hash-based digital signature
schemes that are secure if and only if the underlying hash function is collision resistant.
The existence of collision resistant hash functions can be viewed as a minimum require-
ment for the existence of a digital signature scheme that can sign many documents with
one private key. That signature scheme maps documents (arbitrarily long bit strings) to
digital signatures (bit strings of fixed length). This shows that digital signature algorithms
are in fact hash functions. Those hash functions must be collision resistant: if it were
possible to construct two documents with the same digital signature, the signature scheme
could no longer be considered secure. This argument shows that there exist hash-based
digital signature schemes as long as there exists any digital signature scheme that can
sign multiple documents using one private key. As a consequence, hash-based signature
schemes are the most important post-quantum signature candidates. Although there is no
proof of their quantum computer resistance, their security requirements are minimal. Also,
each new cryptographic hash function yields a new hash-based signature scheme. So the
construction of secure signature schemes is independent of hard algorithmic problems in
number theory or algebra. Constructions from symmetric cryptography suffice. This leads
to another big advantage of hash-based signature schemes. The underlying hash function
can by chosen in view of the hardware and software resources available. For example, if the
signature scheme is to be implemented on a chip that already implements AES, an AES
based hash function can be used, thereby reducing the code size of the signature scheme
and optimizing its running time.

Hash-based signature schemes were invented by Ralph Merkle [23]. Merkle started
from one-time signature schemes, in particular that of Lamport and Diffie [18]. One-time
signatures are even more fundamental. The construction of a secure one-time signature
scheme only requires a one-way function. As shown by Rompel [28], one-way functions are
necessary and sufficient for secure digital signatures. So one-time signature schemes are
really the most fundamental type of digital signature schemes. However, they have a severe
disadvantage. One key-pair consisting of a secret signature key and a public verification
key can only be used to sign and verify a single document. This is inadequate for most
applications. It was the idea of Merkle to use a hash tree that reduces the validity of many
one-time verification keys (the leaves of the hash tree) to the validity of one public key
(the root of the hash tree). The initial construction of Merkle was not sufficiently efficient,
in particular in comparison to the RSA signature scheme. However in the meantime,
many improvements have been found. Now hash-based signatures are the most promising
alternative to RSA and elliptic curve signature schemes.
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2 Hash based one-time signature schemes

This chapter explains signature schemes whose security is only based on the collision re-
sistance of a cryptographic hash function. Those schemes are particularly good candidates
for the post quantum era.

2.1 Lamport–Diffie one-time signature scheme

The Lamport–Diffie one-time signature scheme (LD-OTS) was proposed in [18]. Let n be
a positive integer, the security parameter of LD-OTS. LD-OTS uses a one-way function

f : {0, 1}n → {0, 1}n,

and a cryptographic hash function

g : {0, 1}∗ → {0, 1}n.

LD-OTS key pair generation. The signature key X of LD-OTS consists of 2n bit
strings of length n chosen uniformly at random,

X =
(

xn−1[0], xn−1[1], . . . , x1[0], x1[1], x0[0], x0[1]
)

∈R {0, 1}(n,2n). (1)

The LD-OTS verification key Y is

Y =
(

yn−1[0], yn−1[1], . . . , y1[0], y1[1], y0[0], y0[1]
)

∈ {0, 1}(n,2n), (2)

where
yi[j] = f

(

xi[j]
)

, 0 ≤ i ≤ n− 1, j = 0, 1. (3)

So LD-OTS key generation requires 2n evaluations of f . The signature and verification
keys are 2n bit strings of length n.

LD-OTS signature generation. A document M ∈ {0, 1}∗ is signed using LD-OTS
with a signature key X as in Equation (1). Let g(M) = d = (dn−1, . . . , d0) be the message
digest of M . Then the LD-OTS signature is

σ =
(

xn−1[dn−1], . . . , x1[d1], x0[d0]
)

∈ {0, 1}(n,n). (4)

This signature is a sequence of n bit strings, each of length n. They are chosen as a function
of the message digest d. The ith bit string in this signature is xi[0] if the ith bit in d is 0
and xi[1], otherwise. Signing requires no evaluations of f . The length of the signature is
n2.

LD-OTS Verification. To verify a signature σ = (σn−1, . . . , σ0) of M as in (4), the
verifier calculates the message digest d = (dn−1, . . . , d0). Then she checks whether

(

f(σn−1), . . . , f(σ0)
)

=
(

yn−1[dn−1], . . . , y0[d0]
)

. (5)

Signature verification requires n evaluations of f .
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Example 2.1 Let n = 3, f : {0, 1}3 → {0, 1}3, x 7→ x + 1 mod 8, and let d = (1, 0, 1) be
the hash value of a message M . We choose the signature key

X =
(

x2[0], x2[1], x1[0], x1[1], x0[0], x0[1]
)

=





1 0 0 1 1 0
1 0 1 1 0 1
1 0 1 0 1 0



 ∈ {0, 1}(3,6)

and compute the corresponding verification key

Y =
(

y2[0], y2[1], y1[0], y1[1], y0[0], y0[1]
)

=





0 0 1 1 1 0
0 0 0 1 1 1
0 1 0 1 0 1



 ∈ {0, 1}(3,6).

The signature of d = (1, 0, 1) is

σ = (σ2, σ1, σ0) = (x2[1], x1[0], x0[1]) =





0 0 0
0 1 1
0 1 0



 ∈ {0, 1}(3,3)

Example 2.2 We give an example to illustrate why the signature keys of LD-OTS must
be used only once. Let n = 4. Suppose the signer signs two messages with digests d1 =
(1, 0, 1, 1) and d2 = (1, 1, 1, 0) using the same signature key. The signatures of these digests
are σ1 = (x3[1], x2[0], x1[1], x0[1]) and σ2 = (x3[1], x2[1], x1[1], x0[0]), respectively. Then an
attacker knows x3[1], x2[0], x2[1], x1[1], x0[0], x0[1] from the signature key. She can use this
information to generate valid signatures for messages with digests d3 = (1, 0, 1, 0) and
d4 = (1, 1, 1, 1). This example can be generalized to arbitrary security parameters n. Also,
the attacker is only able to generate valid signatures for certain digests. As long as the
hash function used to compute the message digest is cryptographically secure, she cannot
find appropriate messages.

2.2 Winternitz one-time signature scheme

While the key and signature generation of LD-OTS is very efficient, the size of the signature
is quite large. The Winternitz OTS (W-OTS), which is explained in this section, produces
significantly shorter signatures. The idea is to use one string in the one-time signature
key to simultaneously sign several bits in the message digest. In literature this proposal
appears first in Merkle’s thesis [23]. Merkle writes that the method was suggested to
him by Winternitz in 1979 as a generalization of the Merkle OTS also described in [23].
However, to the best of the authors knowledge, the Winternitz OTS was for the first time
described in full detail in [10]. Like LD-OTS, W-OTS uses a one-way function

f : {0, 1}n → {0, 1}n

and a cryptographic hash function

g : {0, 1}∗ → {0, 1}n.

W-OTS key pair generation. A Winternitz parameter w ≥ 2 is selected which is
the number of bits to be signed simultaneously. Then

t1 =
⌈ n

w

⌉

, t2 =

⌈

⌊log2 t1⌋+ 1 + w

w

⌉

, t = t1 + t2. (6)
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are determined. The signature key X is

X =
(

xt−1, . . . , x1, x0

)

∈R {0, 1}(n,t). (7)

where the bit strings xi are chosen uniformly at random.
The verification key Y is computed by applying f to each bit string in the signature

key 2w − 1 times. So we have

Y =
(

yt−1, . . . , y1, y0

)

∈ {0, 1}(n,t), (8)

where
yi = f2w−1

(

xi

)

, 0 ≤ i ≤ t− 1. (9)

Key generation requires t(2w − 1) evaluations of f and the lengths of the signature and
verification key are t · n bits, respectively.

W-OTS signature generation. A message M with message digest g(M) = d =
(dn−1, . . . , d0) is signed. First, a minimum number of zeros is prepended to d such that the
length of d is divisible by w. The extended string d is split into t1 bit strings bt−1, . . . , bt−t1

of length w. Then
d = bt−1 ‖ . . . ‖ bt−t1 , (10)

where ‖ denotes concatenation. Next, the bit strings bi are identified with integers in
{0, 1, . . . , 2w − 1} and the checksum

c =
t−1
∑

i=t−t1

(2w − bi) (11)

is calculated. Since c ≤ t12
w, the length of the binary representation of c is less than

⌊log2 t12
w⌋+ 1 = ⌊log2 t1⌋+ w + 1. (12)

A minimum number of zeros is prepended to this binary representation such that the
length of the extended string is divisible by w. That extended string is split into t2 blocks
bt2−1, . . . , b0 of length w. Then

c = bt2−1|| . . . ||b0.

Finally the signature of M is computed as

σ =
(

f bt−1(xt−1), . . . , f
b1(x1), f

b0(x0)
)

. (13)

In the worst case, signature generation requires t(2w − 1) evaluations of f . The W-OTS
signature size is t · n.

W-OTS verification. For the verification of the signature σ = (σt−1, . . . , σ0) the
bit strings bt−1, . . . , b0 are calculated as explained in the previous section. Then we check
if

(

f2w−1−bt−1(σn−1), . . . , f
2w−1−b0(σ0)

)

=
(

yn−1, . . . , y0

)

. (14)

If the signature is valid, then σi = f bi(xi) and therefore

f2w−1−bi(σi) = f2w−1(xi) = yi (15)

holds for i = t − 1, . . . , 0. In the worst case, signature verification requires t(2w − 1)
evaluations of f .
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Example 2.3 Let n = 3, w = 2, f : {0, 1}3 → {0, 1}3, x 7→ x + 1 mod 8 and d = (1, 0, 0).
We get t1 = 2, t2 = 2, and t = 4. We choose the signature key as

X =
(

x3, x2, x1, x0

)

=





1 0 0 1
1 0 1 1
1 0 1 0



 ∈ {0, 1}(3,4)

and compute the verification key by applying f three times to the bit strings in X:

Y =
(

y3, y2, y1, y0

)

=





0 0 1 0
1 1 1 0
0 1 0 1



 ∈ {0, 1}(3,4).

Prepending one zero to d and splitting the extended string into blocks of length 2 yields
d = 01||00. The checksum c is c = (4 − 1) + (4 − 0) = 7. Prepending one zero to the
binary representation of c and splitting the extended string into blocks of length 2 yields
c = 01||11. The signature is

σ = (σ3, σ2, σ1, σ0) =
(

f(x3), x2, f(x1), f
3(x0)

)

=





0 0 1 1
0 0 0 1
0 0 0 1



 ∈ {0, 1}(3,4).

The signature is verified by computing

(

f2(σ3), f
3(σ2), f

2(σ1), σ0

)

=





0 0 1 0
1 1 1 0
0 1 0 1



 ∈ {0, 1}(3,4)

and comparing it with the verification key Y .

Example 2.4 We give an example to illustrate why the signature keys of the W-OTS
must be used only once. Let w = 2. Suppose the signer signs two messages with digests
d1 = (1, 0, 0) and d2 = (1, 1, 1) using the same signature key. The signatures of these digests
are σ1 =

(

f(x3), x2, f(x1), f
3(x0)

)

and σ2 =
(

f(x3), f
3(x2), f(x1), x0

)

, respectively. The
attacker can use this information to compute the signatures for messages with digest d3 =
(1, 1, 0) given as σ3 =

(

f(x3), f
2(x2), f(x1), f(x0)

)

Again this example can be generalized
to arbitrary security parameters n. Also, the attacker can only produce valid signatures
for certain digests. As long as the hash function used to compute the message digest is
cryptographically secure, he cannot find appropriate messages.

3 Merkle’s tree authentication scheme

The one-time signature schemes introduced in the last section are inadequate for most
practical situations since each key pair can only be used for one signature. In 1979 Ralph
Merkle proposed a solution to this problem [23]. His idea is to use a complete binary hash
tree to reduce the validity of an arbitrary but fixed number of one time verification keys
to the validity of one single public key, the root of the hash tree.

The Merkle signature scheme (MSS) works with any cryptographic hash function and
any one-time signature scheme. For the explanation we let g : {0, 1}∗ → {0, 1}n be a
cryptographic hash function. We also assume that a one-time signature scheme has been
selected.
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ν0[0] ν0[1] ν0[2] ν0[3] ν0[4] ν0[5] ν0[6] ν0[7]

ν1[0] ν1[1] ν1[2] ν1[3]

ν2[0] ν2[1]

ν3[0]

X0 X1 X2 X3 X4 X5 X6 X7

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

Figure 1: A Merkle tree of height H = 3

MSS key pair generation

The signer selects H ∈ N, H ≥ 2. Then the key pair to be generated will be able
to sign/verify 2H documents. Note that this is an important difference to signature
schemes such as RSA and ECDSA, where potentially arbitrarily many documents can
be signed/verified with one key pair. However, in practice this number is also limited by
the devices on which the signature is generated or by some policy. The signer generates
2H one-time key pairs (Xj , Yj), 0 ≤ j < 2H . Here Xj is the signature key and Yj is the
verification key. They are both bit strings. The leaves of the Merkle tree are the digests
g(Yj), 0 ≤ j < 2H . The inner nodes of the Merkle tree are computed according to the
following construction rule: a parent node is the hash value of the concatenation of its left
and right children. The MSS public key is the root of the Merkle tree. The MSS private
key is the sequence of the 2H one-time signature keys. To be more precise, denote the
nodes in the Merkle tree by νh[j], 0 ≤ j < 2H−h, where h ∈ {0, . . . , H} is the height of the
node. Then

νh[j] = g(νh−1[2j] ‖ νh−1[2j + 1]), 1 ≤ h ≤ H, 0 ≤ j < 2H−h. (16)

Figure 1 shows an example for H = 3.
MSS key pair generation requires the computation of 2H one-time key pairs and 2H+1−1

evaluations of the hash function.

Efficient root computation

In order to compute the root of the Merkle tree it is not necessary to store the full hash
tree. Instead, the treehash algorithm 3.1 is applied. The basic idea of this algorithm is
to successively compute leaves and, whenever possible, compute their parents. To store
nodes, the treehash algorithm uses a stack Stack equipped with the usual push and pop
operations. Input of the tree hash algorithm is the height H of the Merkle tree. Output
is the root of the Merkle tree, i.e. the MSS public key. Algorithm 3.1 uses the subroutine
Leafcalc(j) to compute the jth leaf. The Leafcalc(j) routine computes the jth one-
time key pair and computes the jth leaf from the jth one-time verification key as described
above.
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Algorithm 3.1 Treehash

Input: Height H ≥ 2
Output: Root of the Merkle tree

1. for j = 0, . . . , 2H − 1 do

(a) Compute the jth leaf: Node1 ← Leafcalc(j)

(b) While Node1 has the same height as the top node on Stack do

i. Pop the top node from the stack: Node2 ← Stack.pop()

ii. Compute their parent node: Node1 ← g(Node2 ‖ Node1)

(c) Push the parent node on the stack: Stack.push(Node1)

2. Let R be the single node stored on the stack: R← Stack.pop()

3. Return R

1 2 4 5 8 9 11 12

3 6 10 13

7 14

15

Figure 2: The treehash algorithm

Figure 2 shows the order in which the nodes of a Merkle tree are computed by the
treehash algorithm. In this example, the maximum number of nodes that are stored on
the stack is 3. This happens after node 11 is generated and pushed on the stack. In
general, the treehash algorithm needs to store at most H so-called tail nodes on the stack.
To compute the root of a Merkle tree of height H, the treehash algorithm requires 2H calls
of the Leafcalc subroutine, and 2H − 1 evaluations of the hash function.

MSS signature generation

MSS uses the one-time signature keys successively for the signature generation. To sign a
message M , the signer first computes the n-bit digest d = g(M). Then he generates the one-
time signature σOTS of the digest using the sth one-time signature key Xs, s ∈ {0, . . . , 2H−
1}. The Merkle signature will contain this one-time signature and the corresponding
one-time verification key Ys. To prove the authenticity of Ys to the verifier, the signer
also includes the index s as well as an authentication path for the verification key Ys

which is a sequence As = (a0, . . . , aH−1) of nodes in the Merkle tree. This index and the
authentication path allow the verifier to construct a path from the leaf g(Ys) to the root
of the Merkle tree. Node h in the authentication path is the sibling of the height h node
on the path from leaf g(Ys) to the Merkle tree root:

ah =

{

νh[s/2h − 1] , if ⌊s/2h⌋ ≡ 1 mod 2
νh[s/2h + 1] , if ⌊s/2h⌋ ≡ 0 mod 2

(17)

for h = 0, . . .H − 1. Figure 3 shows an example for s = 3. So the sth Merkle signature is

σs =
(

s, σOTS, Ys, (a0, . . . , aH−1)
)

(18)
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a0 g(Y3)

a1

a2

X3

Y3 d

OTS σOTS

Figure 3: Merkle signature generation for s = 3. Dashed nodes denote the authentication
path for leaf g(Y3). Arrows indicate the path from leaf g(Y3) to the root.

MSS signature verification

Verification of the Merkle signature from the previous section consists of two steps. In the
first step, the verifier uses the one-time verification key Ys to verify the one-time signature
σOTS of the digest d by means of the verification algorithm of the respective one-time
signature scheme. In the second step the verifier validates the authenticity of the one-time
verification key Ys by constructing the path (p0, . . . , pH) from the sth leaf g(Ys) to the
root of the Merkle tree. He uses the index s and the authentication path (a0, . . . , aH−1)
and applies the following construction.

ph =

{

g(ah−1||ph−1) , if ⌊s/2h−1⌋ ≡ 1 mod 2
g(ph−1||ah−1) , if ⌊s/2h−1⌋ ≡ 0 mod 2

(19)

for h = 1, . . .H and p0 = g(Ys). The index s is used for deciding in which order the
authentication path nodes and the nodes on the path from leaf g(Ys) to the Merkle tree
root are to be concatenated. The authentication of the one-time verification key Ys is
successful if and only if pH equals the public key.

4 One-time key-pair generation using a PRNG

According to the description of MSS from Section 3, the MSS private key consists of 2H one-
time signature keys. Storing such a huge amount of data is not feasible for most practical
applications. As suggested in [3], space can be saved by using a deterministic pseudo
random number generator (PRNG) and storing only the seed of that PRNG. Then each
one-time signature key must be generated twice, once for the MSS public key generation
and once during the signing phase.

In the following, let PRNG be a cryptographically secure pseudo random number gen-
erator that on input an n-bit seed Seedin outputs a random number Rand and an updated
seed Seedout, both of bit length n.

PRNG : {0, 1}n → {0, 1}n × {0, 1}n

Seedin 7→ (Rand,Seedout)
(20)
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MSS key pair generation using an PRNG

We explain how MSS key-pair generation using a PRNG works. The first step is to choose
an n-bit seed Seed0 uniformly at random. For the generation of the one-time signature
keys we use a sequence of seeds SeedOtsj , 0 ≤ j < 2H . They are computed iteratively
using

(SeedOtsj ,Seedj+1) = PRNG(Seedj), 0 ≤ j < 2H . (21)

Here SeedOtsj is used to calculate the jth one-time signature key.
For example, in the case of W-OTS (see Section 2.2) the jth signature key is Xj =

(xt−1, . . . , x0). The t bit strings of length n in this signature key are generated using
SeedOtsj .

(xi,SeedOtsj) = PRNG(SeedOtsj), i = t− 1, . . . , 0 (22)

The seed SeedOtsj is updated during each call to the PRNG. This shows that in order
to calculate the signature key Xj only knowledge of Seedj is necessary. When SeedOtsj

is computed, the new seed Seedj+1 for the generation of the signature key Xj+1 is also
determined. Figure 4 visualizes the one-time signature key generation using an PRNG.

If this method is used, the MSS private key is initially Seed0. Its length is n. It is
replaced by the seeds Seedj+1 determined during the generation of signature key Xj .

PRNG

PRNG

PRNG

PRNG

PRNG

PRNG

PRNGPRNGPRNG

x0

xt−1

x0

xt−1

x0

xt−1

Seed0

Seed1 Seed2H
−1

SeedOts0 SeedOts1
SeedOts2H

−1

SeedOts0 SeedOts1
SeedOts2H

−1

SeedOts0 SeedOts1
SeedOts2H

−1

...
...

...

· · ·

Figure 4: One-time signature key generation using an PRNG

MSS signature generation using an PRNG

In contrast to the original MSS signature generation, the one-time signature key must be
computed before the signature is generated. When the signature key is computed the seed
is updated for the next signature.

Forward security

In addition to reducing the private key size, using a PRNG for the one-time signature key
generation has another benefit. It makes MSS forward secure as long as PRNG is forward
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secure which means that calculating previous seeds from the actual seed is infeasible. For-
ward security of the signature scheme means that all signatures issued before a revocation
remain valid. MSS is forward secure, since the actual MSS private key can only be used
to generate one-time signature keys for upcoming signatures but not to forge previous.

5 Authentication path computation

In this chapter we will present a variety of techniques for traversal of Merkle trees of height
H. The use of the techniques is transparent to a verifier, who will not need to know how a
set of outputs were generated, but only that they are correct. Therefore, the technique can
be employed in any construction for which the generation and output of authentication
paths for consecutive leaves is required.

The first traversal algorithm is structurally very simple and allows for various tradeoffs
between storage and computation. For one choice of parameters, the total space required is
bounded by 1.5H2/ log H hash values, and the worst-case computational effort is 2H/ log H
tree node computations per output.

The next Merkle tree-traversal algorithm has a better space and time complexity than
the previously known algorithms. Specifically, the algorithm requires computation of at
most 2H tree nodes per round and requires storage of less than 3H node values. We
also prove that this complexity is optimal in the sense that there can be no Merkle Tree
traversal algorithm which requires both less than O(H) time and less than O(H) space.

In the analysis of the first two algorithms, the computation of a leaf and an inner node
are each counted as a single elementary operation1.

The third Merkle tree-traversal algorithm has the same space and time complexity as
the second. However it has a significant constant factor improvement and was designed for
practical implementation. It distinguishes between leaf computations and the computation
of inner nodes. To traverse a tree of height H it roughly requires the computation of H/2
leaves and 3H/2 inner nodes.

5.1 The Classic Traversal

The challenge of Merkle tree traversal is to ensure that all node values are ready when
needed, but are computed in a manner which conserves space and time. To motivate the
new algorithms, we first discuss what the average per-round computation is expected to
be, and review the classic Merkle tree traversal.

Average Costs. Each node in the tree is eventually part of an authentication path, so
one useful measure is the total cost of computing each node value exactly once. There are
2H−h right (respectively, left) nodes at height h, and if computed independently, each costs
2h+1−1 operations. Rounding up, this is 2H+1 = 2N operations, or two per round. Adding
together the costs for each height h (0 ≤ h < H), we expect, on average, 2H = 2 log(N)
operations per round to be required.

Three Components. As with a digital signature scheme, the tree-traversal algo-
rithms consists of three components: key generation, output, and verification. During key
generation, the first authentication path and some upcoming authentication node values
are computed.

1This differs from the measurement of total computational cost, which includes, e.g., the scheduling

algorithm itself.
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The output phase consists of N rounds, one for each leaf s ∈ {0, . . . , N − 1}. During
round s, the authentication path for the sth leaf, Authi, i = 0, . . . , H − 1 is output.
Additionally, the algorithm’s state is modified in order to prepare for future outputs.

The verification phase is identical to the traditional verification phase for Merkle trees
described in Section 3.

Notation. In addition to denoting the current authentication nodes Authh, we need
some notation to describe the stacks used to compute upcoming needed nodes. Define
Stackh to be an object which contains a stack of node values as in the description of the
treehash algorithm in Section 3, Algorithm 3.1. Stackh.initialize and Stackh.update will
be methods to setup and incrementally execute treehash.

Algorithm presentation

Key Generation and Setup. The main task of key generation is to compute and
publish the root value. This is a direct application of the treehash algorithm described in
Section 3. In the process of this computation, every node value is computed, and, it is
important to record the initial values Authi, as well as the upcoming values for each of
the Authi.

If we denote the jth node at height h by νh[j], we have Authh = νh[1] (these are right
nodes). The “upcoming” authentication node at height h is νh[0] (these are left nodes).
These node values are used to initialize Stackh to be in the state of the treehash algorithm
having completed.

Algorithm 5.1 Key-Gen and Setup

1. Initial Authentication Nodes For each h ∈ {0, 1, . . .H − 1}:
Calculate Authh = νh[1].

2. Initial Next Nodes For each h ∈ {0, 1, . . .H − 1}:
Setup Stackh with the single node value Authh = νh[0].

3. Public Key Calculate and publish tree root, νH [0].

Output and Update. Merkle’s tree traversal algorithm runs one instance of the
treehash algorithm for each height h to compute the next authentication node value for
that level. Every 2h rounds, the authentication path will shift to the right at level h, thus
requiring a new node (its sibling) as the height h authentication node.

At each round the state of the treehash algorithm is updated with two units of compu-
tation. After 2h rounds this node value computation will be completed, and a new instance
of treehash begins for the next authentication node at that level.

To specify how to refresh the Auth nodes, we observe how to easily determine which
heights need updating: height h needs updating if and only if 2h divides s + 1 evenly,
where s ∈ {0, . . . , N − 1} denotes the current round. Furthermore, we note that at round
s + 1 + 2h, the authentication path will pass though the (s + 1 + 2h)/2hth node at height
h. Thus, its sibling’s value, (the new required upcoming Authh) is determined from the
2h leaf values starting from leaf number (s + 1 + 2h)⊕ 2h, where ⊕ denotes bitwise XOR.

In this language, we summarize Merkle’s classic traversal algorithm in Algorithm 5.2.
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Algorithm 5.2 Classic Merkle Tree Traversal

1. Set s = 0.

2. Output:

• For each h ∈ [0, H − 1] output Authh.

3. Refresh Auth Nodes:
For all h such that 2h divides s + 1:

• Set Authh be the sole node value in Stackh.

• Set startnode = (s + 1 + 2h)⊕ 2h.

• Stackh.initialize(startnode, h).

4. Build Stacks:
For all h ∈ [0, H − 1]:

• Stackh.update(2). (Each stack receives two updates)

5. Loop:

• Set s = s + 1.

• If s < 2H go to Step 2.

5.2 Fractal Merkle Tree Traversal

The term “fractal” was chosen due to the focus on many smaller binary trees within the
larger structure of the Merkle tree.

The crux of this algorithm is the selection of which node values to compute and retain
at each step of the output algorithm. We describe this selection by using a collection of
subtrees of fixed height h. We begin with some notation and then provide the intuition for
the algorithm.

Notation. Starting with a Merkle tree Tree of height H, we introduce further no-
tation to deal with subtrees. First we choose a subtree height h < H. We let the altitude
of a node ν in Tree be the length of the path from ν to a leaf of Tree (therefore, the
altitude of a leaf of Tree is zero). Consider a node ν with altitude at least h. We define
the h-subtree at ν to be the unique subtree in Tree which has ν as its root and which
has height h. For simplicity in the suite, we assume h is a divisor of H, and let the ratio,
L = H/h, be the number of levels of subtrees. We say that an h-subtree at ν is “at level
i” when it has altitude ih for some i ∈ {1, 2, . . .H}. For each i, there are 2H−ih such
h-subtrees at level i.

We say that a series of h-subtrees Treei (i = 1 . . . L) is a stacked series of h-subtrees,
if for all i < L the root of Treei is a leaf of Treei+1. We illustrate the subtree notation
and provide a visualization of a stacked series of h-subtrees in Figure 5.
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Figure 5: (Left) The height of the Merkle tree is H, and thus, the number of leaves is
N = 2H . The height of each subtree is h. The altitude A(t1) and A(t2) of the subtrees t1
and t2 is marked. (Right) Instead of storing all tree nodes, we store a smaller set - those
within the stacked subtrees. The leaf whose pre-image will be output next is contained in
the lowest-most subtree; the entire authentication path is contained in the stacked set of
subtrees.

Existing and Desired Subtrees

Static view. As previously mentioned, we store some portion of the node values,
and update what values are stored over time. Specifically, during any point of the output
phase, there will exist a series of stacked existing subtrees, as in Figure 2. We say that we
place a pebble on a node ν of the tree Tree when we store this node. There are always L
such subtrees Existi for each i ∈ {1, . . . L}, with pebbles on each of their nodes (except
their roots). By design, for any leaf in Exist1, the corresponding authentication path is
completely contained in the stacked set of existing subtrees.

Dynamic view. Apart from the above set of existing subtrees, which contain the
next required authentication path, we will have a set of desired subtrees. If the root of the
tree Existi has index a, according to the ordering of the height-ih nodes, then Desirei

is defined to be the h-subtree with index a + 1 (provided that a < 2H−i·h − 1). In case
a = 2H−i·h − 1, then Existi is the last subtree at this level, and there is no corresponding
desired subtree. In particular, there is never a desired subtree at level L. The left part of
Figure 6 depicts the adjacent existing and desired subtrees.

As the name suggests, we need to compute the pebbles in the desired subtrees. This is
accomplished by adapting an application of the treehash algorithm (Section 3, Algorithm
3.1) to the root of Desirei. For these purposes, the treehash algorithm is altered to save
the pebbles needed for Desirei, rather than discarding them, and secondly to terminate
one round early, never actually computing the root. Using this variant of treehash, we
see that each desired subtree being computed has a tail of saved intermediate pebbles.
We depict this dynamic computation in the right part of Figure 6, which shows partially
completed subtrees and their associated tails.

Algorithm Intuition

We now can present intuition for the main algorithm, and explain why the existing subtrees
Existi will always be available.
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Figure 6: (Left) The grey subtrees correspond to the existing subtrees (as in figure 5) while
the white subtrees correspond to the desired subtrees. As the existing subtrees are used
up, the desired subtrees are gradually constructed. (Right) The figure shows the set of
desired subtrees from the previous figure, but with grey portions corresponding to nodes
that have been computed and dotted lines corresponding to pebbles in the tail.

Overview. The goal of the traversal is to sequentially output authentication paths.
By design, the existing subtrees should always contain the next authentication path to be
output, while the desired subtrees contain more and more completed pebbles with each
round, until the existing subtree expires.

When Existi is used in an output for the last time, we say that it dies. At that time, the
adjacent subtree, Desirei will need to have been completed, i.e., have values assigned to
all its nodes but its root (since the latter node is already part of the parent tree.) The tree
Existi is then reincarnated as Desirei. First all the old pebbles of Existi are discarded;
then the pebbles of Desirei (and their associated values) taken by Existi. (Once this
occurs, the computation of the new and adjacent subtree Desirei will be initiated.) This
way, if one can ensure that the pebbles on trees Desirei are always computed on time,
one can see that there will always be completed existing subtrees Existi.

Modifying the treehash algorithm. As mentioned above, our tool used to com-
pute the desired tree is a modified version of the classic treehash algorithm applied to the
root of Desirei. This version differs in that (1) it stops the algorithm one round earlier
(thereby skipping the root calculation), and (2) every pebble of height greater than ih
is saved into the tree Desirei. For purposes of counting, we won’t consider such saved
pebbles as part of the proper tail.

Amortizing the computations. For a particular level i, we recall that the com-
putational cost for tree Desirei is 2 · 2ih − 2, as we omit the calculation of the root. At
the same time, we know that Existi will serve for 2ih output rounds. We amortize the
computation of Desirei over this period, by simply computing two iterations of treehash
each round. In fact, Desirei will be ready before it is needed, exactly 1 round in advance!

Thus, for each level, allocating 2 computational units ensures that the desired trees are
completed on time. The total computation per round is thus 2(L− 1).
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Solution and Algorithm Presentation

Three phases. We now describe more precisely the main algorithm. There are three
phases, the key generation phase; the output phase; and the verification phase. During the
key generation phase (which may be performed offline by a relatively powerful computer),
the root of the tree is computed and output, taking the role of a public key. Additionally,
the iterative output phase needs some setup, namely the computation of pebbles on the
initial existing subtrees. These are stored on the computer performing the output phase.

The output phase consists of a number of rounds. During round s, the authentication
path of the sth leaf is output. In addition, some number of pebbles are discarded and some
number of pebbles are computed, in order to prepare for future outputs.

The verification phase is identical to the traditional verification phase for Merkle trees
and has been described above. We remark again that the outputs the algorithm generates
will be indistinguishable from the outputs generated by a traditional algorithm. Therefore,
we do not detail the verification phase, but merely the key generation phase and output
phase.

Key Generation. First, the pebbles of the left-most set of stacked existing subtrees
are computed and stored. Each associated pebble has a value, a position, and a height. In
addition, a list of desired subtrees is created, one for each level i < L, each initialized with
an empty stack for use in the modified treehash algorithm.

Recalling the indexing of the leaves, indexed by s ∈ {0, 1, . . . N − 1}, we initialize a
counter Desirei.position to be 2ih, indicating which Merkle tree leaf is to be computed
next.

Algorithm 5.3 Key-Gen and Setup

1. Initial Subtrees For each i ∈ {1, 2, . . . L}:

• Calculate all (non-root) pebbles in existing subtree at level i.

• Create new empty desired subtree at each level i (except for i = L),
with leaf position initialized to 2ih.

2. Public Key Calculate and publish tree root.

Output and Update Phase. Each round of the execution phase consists of the
following portions: generating an output, death and reincarnation of existing subtrees, and
growing desired subtrees.

At round s, the output consists of the authentication path associated to the sth leaf.
The pebbles for this authentication path will be contained in the existing subtrees.

When the last authentication path requiring pebbles from a given existing subtree has
been output, then the subtree is no longer useful, and we say that it “dies.” By then, the
corresponding desired subtree has been completed, and the recently died existing subtree
“reincarnates” as this completed desired subtree. Notice that a new subtree at level i is
needed once every 2ih rounds, and so once per 2ih rounds the pebbles in the existing tree
are discarded. More technically, at round s, s = 0 (mod 2ih) the pebbles in the old tree
Existi are discarded; the completed tree Desirei becomes the new tree Existi; and a
new, empty desired subtree is created.
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In the last step we grow each desired subtree that is not yet completed a little bit. More
specifically, we apply two computational units to the new or already started invocations of
the treehash algorithm. We concisely present this algorithm as follows:

Algorithm 5.4 Stratified Merkle Tree Traversal

1. Set s = 0.

2. Output Authentication Path for leaf number s.

3. Next Subtree For each i ∈ {1, 2, . . . L} for which Existi is no longer needed,
i.e, s = 0 (mod 2hi):

• Remove Pebbles in Existi.

• Rename tree Desirei as tree Existi.

• Create new, empty tree Desirei (if s + 2hi < 2H).

4. Grow Subtrees For each i ∈ {1, 2, . . . h}: Grow tree Desirei by applying 2 units
to the modified treehash algorithm (unless Desirei is completed).

5. Increment s and loop back to step 2 (while s < 2H).

Time and Space Analysis

Time. As presented above, the algorithm allocates 2 computational units to each
desired subtree. Here, a computational unit is defined to be either a call to Leafcalc, or
the computation of a hash value. Since there are at most L− 1 desired subtrees, the total
computational cost per round is

Tmax = 2(L− 1) < 2H/h. (23)

Space. The total amount of space required by the algorithm, or equivalently, the
number of available pebbles required, may be bounded by simply counting the contributions
from (1) the existing subtrees, (2) the desired subtrees, and (3) the tails.

First, there are L existing subtrees and up to L− 1 desired subtrees, and each of these
contains up to 2h+1 − 2 pebbles, since we do not store the roots. Additionally, the tail
associated to a desired subtree at level i > 1 contains at most h · i+1 pebbles. If we count
only the pebbles in the tail which do not belong to the desired subtree, then this “proper”
tail contains at most h(i− 1) + 1 pebbles. Adding these contributions, we obtain the sum
(2L− 1)(2h+1 − 2) + h

∑L−2
i=1 i + 1 , and thus the bound:

Spacemax ≤ (2L− 1)(2h+1 − 2) + L− 2 + h(L− 2)(L− 1)/2. (24)

A marginally worse bound is simpler to write:

Spacemax < 2 L 2h+1 + H L /2. (25)

Trade-offs. The solution just analyzed presents us with a trade-off between time and
space. In general, the larger the subtrees are, the faster the algorithm will run, but the
larger the space requirement will be. The parameter affecting the space and time in this

17



trade-off is h; in terms of h the computational cost is below 2H/h, the space required is
bounded above by 2 L 2h+1+H L/2. Alternatively, and in terms of h, the space is bounded
above by 2 H 2h+1/h + H2/2 h.

Low Space Solution. If one is interested in parameters requiring little space, there
is an optimal h, due to the fact that for very small h, the number of tail pebbles increases
significantly (when H2/2h becomes large). An approximation of this value is h = log H.
One could find the exact value by differentiating the expression for the space: 2 H 2h+1/h+
H2/2 h. For this choice of h = log H = log log N , we obtain

Tmax =
2H

log H
. (26)

Spacemax ≤
5

2
·

H2

log H
. (27)

These results are interesting because they asymptotically improve Merkle’s result from
Section 5.1 with respect to both space and time. Merkle’s approach required Tmax = 2H
and Spacemax ≈ H2/2.

Additional Savings

We now return to the main algorithm, and explain how a small technical modification will
improve the constants in the space bound, ultimately yielding the claimed result.

Although this modification does not affect the complexity class of either the space or
time costs, it is of practical interest as it nearly halves the space bound in certain cases.
It is presented after the main exposition in order to retain the original simplicity, as this
analysis is slightly more technical. The modification is based on two observations: (1)
There may be pebbles in existing subtrees which are no longer useful, and (2) The desired
subtrees are always in a state of partial completion. In fact, we have found that pebbles
in an existing subtree may be discarded nearly as fast as pebbles are entered into the
corresponding desired subtree. The modifications are as follows:

1. Discard pebbles in the trees Existi as soon as they will never again be required.

2. Omit the first application of 2 units to the modified treehash algorithm.

We note that with the second modification, the desired subtrees still complete, just in time.
With these small changes, for all levels i < L, the number of pebbles contained in both
Existi, and Desirei can be bounded by the following expression.

SpaceExisti
+ SpaceDesirei

≤ 2ih+1 − 2 + (h− 2). (28)

This is nearly half of the previous bound of 2 · (2ih+1 − 2). We remark here that the
quantity h− 2 measures the maximum number of pebbles contained in Desirei exceeding
the number of pebbles contained in Existi which have been discarded. Using the estimate
(28), we revise the space bound computed in the previous section to be

Spacemax ≤ (L)(2h+1 − 2) + (L− 1)(h− 2) + L− 2 + h(L− 2)(L− 1)/2. (29)

We again round this up to obtain a simpler bound.

Spacemax < L 2h+1H L /2. (30)
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Specializing to the choice h = log H, we improve the above result to

Spacemax ≤
3

2
·

H2

log H
. (31)

by reducing the constant from 5/2 to 3/2.

Proof of Space Bound. Here we prove the assertion of Equation (28) which states
for any level i the number of pebbles in the Existi plus the number of pebbles in the
Desirei is less than 2 · 2hi − 2 + (h− 2). This basic observation reflects the fact that the
desired subtree can grow only slightly faster than the existing subtree shrinks. Without
loss of generality, in order to simplify the exposition, we do not specify the subtree indices,
and restrict our attention to the first existing-desired subtree pair at a given level i.

The first modification ensures that pebbles are returned more continuously than pre-
viously, so we quantify this. Subtree Existi, has 2h leaves, and as each leaf is no longer
required, neither may be some interior nodes above it. These leaves are finished at rounds
2(i−1)ha−1 for a ∈ {1, . . . 2h}. We may determine the number of pebbles returned at these
times by observing that a leaf is returned every single round, a pebble at height i h + 1
every two rounds, one at height i h + 2 every four rounds, etc. We are interested in the
number returned at all times up to the time 2(i−1)ha − 1; this is the sum of the greatest
integer functions:

A + [A/2] + [A/4] + [A/8] + . . . + [A/2h]

Writing a in binary notation a = a0 + 21a1 + 22a2 + . . . + 2hah, this sum is also

a0(2
1 − 1) + a1 · (2

2 − 1) + a2 · (2
3 − 1) + . . . + ah(2h+1 − 1).

The cost to calculate the corresponding pebbles in Desirei may also be calculated
with a similar expression. Using the fact that a height h0 node needs 2h0+1 − 1 units to
compute, we see that the desired subtree requires

a0(2
(i−1)h+1 − 1) + a1(2 · 2

(i−1)h+2 − 1) + . . . + ah(2 · 2ih+1 − 1)

computational units to place those same pebbles. This cost is equal to 2 · 2(i−1)h · a − z,
where z denotes the number of nonzero digits in the binary expansion of a.

At time 2(i−1) ha− 1, a total of 2 · 2(i−1) ha− 2 units of computation has been applied
to Desirei, (factoring in our 1 round delay). Noting that 2(i−1) h − 1 more rounds may
pass before Existi loses any more pebbles, we see that the maximal number of pebbles
during this interval must be realized at the very end of this interval. At this point in
time, the desired subtree has computed exactly the pebbles that have been removed from
the existing tree, plus whatever additional pebbles it can compute with its remaining
2 · 2ih − 2 + z − 2 computational units. The next pebble, (a leaf) costs 2 · 2ih − 1 which
leaves z− 3 computational units. Even if all of these units result in new pebbles, the total
extra is still less than or equal to 1 + z − 3. Since z ≤ h, this number of extra pebbles is
bounded by h− 2, as claimed, and Equation (28) is proved.

5.3 Merkle Tree Traversal in Log Space and Time

Let us make some observations about the classic traversal algorithm from Section 5.1. We
see that with the classic algorithm above, up to H instances of the treehash algorithm may
be concurrently active, one for each height less than H. One can conceptualize them as
H processes running in parallel, each requiring also a certain amount of space for the “tail
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nodes” of the treehash algorithm, and receiving a budget of two hash value computations
per round, clearly enough to complete the 2h+1 − 1 hash computations required over the
2h available rounds.

Because the stack employed by treehash may contain up to h + 1 node values, we are
only guaranteed a space bound of 1 + 2 + · · · + H. The possibility of so many tail nodes
is the source of the Ω(H2/2) space complexity in the classic algorithm.

Considering that for the larger h, the treehash calculations have many rounds to com-
plete, it appears that it might be wasteful to save so many intermediate nodes at once. Our
idea is to schedule the concurrent treehash calculations differently, so that at any given
round s ∈ {0, . . . , 2H − 1}, the associated stacks are mostly empty. We chose a schedule
which generally favors computation of upcoming authentication nodes Authh for lower h,
(because they are required sooner), but delays beginning of a new instance of the treehash
algorithm slightly, waiting until all stacks Stacki are partially completed, containing no
tail nodes of height less than h.

This delay, was motivated by the observation that in general, if the computation of
two nodes at the same height in different treehash stacks are computed serially, rather
than in parallel, less space will be used. Informally, we call the delay in starting new stack
computations “zipping up the tails”. We will need to prove the fact, which is no longer
obvious, that the upcoming needed nodes will always be ready in time.

The New Traversal Algorithm

In this section we describe the new scheduling algorithm. Comparing to the classic traversal
algorithm, the only difference will be in how the budget of 2H hash function evaluations
will be allocated among the potentially H concurrent treehash processes.

Define Stackh.low to be the height of the lowest node in Stackh, except in two cases:
if the stack is empty Stackh.low is defined to be h, and if the treehash algorithm has
completed Stackh.low is defined to be ∞.

Using the idea of zipping up the tails, there is more than one way to invent a scheduling
algorithm which will take advantage of this savings. The one we present here is not optimal,
but it is simple to describe. Additional practical improvements are discussed in Section
5.5.

This version can be concisely described as follows. The upcoming needed authentication
nodes are computed as in the classic traversal, but the various stacks do not all receive
equal attention. Each treehash instance can be characterized as being either not started,
partially completed, or completed.

Our schedule prefers to complete Stackh for the lowest h values first, unless another
stack has a lower tail node. We express this preference by defining lmin be the minimum
of the h values Stackh.low, then choosing to focus our attention on the smallest level h
attaining this minimum. (setting Stackh.low = ∞ for completed stacks effectively skips
them over).

In other words, all stacks must be completed to a stage where there are no tail nodes at
height h or less before we start a new Stackh treehash computation. The final algorithm
is summarized in Algorithm 5.5.

Correctness and Analysis

In this section we show that our computational budget of 2H − 1 is indeed sufficient to
complete every Stackh computation before it is required as an authentication node. We
also show that the space required for hash values is less than 3H.
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Algorithm 5.5 Logarithmic Merkle Tree Traversal

1. Set s = 0.

2. Output:

• For each h ∈ [0, H − 1] output Authh.

3. Refresh Auth Nodes:
For all h such that 2h divides s + 1:

• Set Authh be the sole node value in Stackh.

• Set startnode = (s + 1 + 2h)⊕ 2h.

• Stackh.initialize(startnode, h).

4. Build Stacks:
Repeat the following 2H − 1 times:

• Let lmin be the minimum of Stackh.low.

• Let focus be the least h so Stackh.low = lmin.

• Stackfocus.update.

5. Loop:

• Set s = s + 1.

• If s < 2H go to Step 2.
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Nodes are Computed on Time. As presented above, the algorithm allocates ex-
actly a budget of 2H − 1 computational units per round to spend updating the h stacks.
Here, a computational unit is defined to be either a call to Leafcalc, or the computation
of a hash value. We do not model any extra expense due to complex leaf calculations.

To prove this, we focus on a given height h, and consider the period starting from the
time Stackh is created and ending at the time when the upcoming authentication node
(denoted Needh here) is required to be completed. This is not immediately clear, due to
the complicated scheduling algorithm. Our approach to prove that Needh is completed
on time is to showing that the total budget over this period exceeds the cost of all nodes
computed within this period which can be computed before Needh.

The node Needh itself costs only 2h+1 − 1 units, a tractable amount given that there
are 2h rounds between the time Stackh is created, and the time by which Needh must
be completed. However, a non trivial calculation is required, since in addition to the
resources required by Needh, many other nodes compete for the total budget of 2H2h

computational units available in this period. These nodes include all the future needed
nodes Needi, (i < h), for lower levels. Finally there may be a partial contribution to a
node Needi, i > h, so that its stack contains no low nodes by the time Needh is computed.

It is easy to count the number of such needed nodes in the interval, and we know the
cost of each one. As for the contributions to higher stacks, we at least know that the cost
to raise any low node to height h must be less than 2h+1 − 1 (the total cost of a height h
node). We summarize these quantities and costs in the following figure.

Table 1: Nodes built during 2h rounds for Needh.

Node Type Quantity Cost each

Needh 1 2h+1 − 1
Needh−1 2 2h − 1

...
...

...

Needk 2h−k 2k+1 − 1
...

...
...

Need0 2h 1
Tail 1 ≤ 2h+1 − 2

We proceed to tally up the total cost incurred during the interval. Notice that the row
beginning Need0 requires a total of 2h+1 computational units. For every other row in the
node chart, the number of nodes of a given type multiplied by the cost per node is less
than 2h+1. There are h + 1 such rows, so the total cost of all nodes represented in the
chart is

TotalCosth < (h + 2)2h. (32)

For heights h ≤ H − 2, it is clear that this total cost is less than 2H2H . It is also true for
the remaining case of h = H − 1, because there are no tail nodes in this case.

We conclude that, as claimed, the budget of 2H − 1 units per round is indeed always
sufficient to prepare Needh on time, for any 0 ≤ h < H.

Space is Bounded by 3H. Our motivation leading to this relatively complex
scheduling is to use as little space as possible. To prove this, we simply add up the
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quantities of each kind of node. We know there are always H nodes Authh. Let C < H
be the number of completed nodes Needh.

#Authi + #Needi = H + C. (33)

We must finally consider the number of tail nodes in the Stackh. As for these, we
observe that since a Stackh never becomes active until all nodes in “higher” stacks are of
height at least h, there can never be two distinct stacks, each containing a node of the same
height. Furthermore, recalling algorithm treehash, we know there is at most one height for
which a stack has two node values. In all, there is at most one tail node at each height
(0 ≤ h ≤ H − 3), plus up to one additional tail node per non-completed stack. Thus

#Tail ≤ H − 2 + (H − C). (34)

Adding all types of nodes we obtain:

#Authi + #Needi + #Tail ≤ 3H − 2. (35)

This proves the assertion. There are at most 3H − 2 stored nodes.

5.4 Asymptotic Optimality Result

An interesting optimality result states that a traversal algorithm can never beat both time
O(log(N)) and space O(log(N)). It is clear that at least H − 2 nodes are required for
the treehash algorithm, so our task is essentially to show that if space is limited by any
constant multiple of log(N), then the computational complexity must be Ω(log(N)). Let
us be clear that this theorem does not quantify the constants. Clearly, with greater space,
computation time can be reduced.

Theorem 5.1 Suppose that there is a Merkle tree traversal algorithm for which the space
is bounded by α log(N). Then there exists some constant β so that the time required is at
least β log(N).

The theorem simply states that it is not possible to reduce space complexity below loga-
rithmic without increasing the time complexity beyond logarithmic!

The proof of this technical statement is found in the upcoming subsection, but we will
briefly describe the approach here. We consider only right nodes for the proof. We divide
all right nodes into two groups: those which must be computed (at a cost of 2h+1 − 1),
and those which have been saved from some earlier calculation. The proof assumes a
sub-logarithmic time complexity and derives a contradiction.

The more nodes in the second category, the faster the traversal can go. However,
such a large quantity of nodes would be required to be saved in order to reduce the time
complexity to sub-logarithmic, that the average number of saved node values would have to
exceed a linear amount! The rather technical proof presented next uses a certain sequence
of subtrees to formulate the contradiction.

We now begin the technical proof of Theorem 5.1. This will be a proof by contradiction.
We assume that the time complexity is sub logarithmic, and show that this is incompatible
with the assumption that the space complexity is O(log(N)). Our strategy to produce a
contradiction is to find a bound on some linear combination of the average time and the
average amount of space consumed.
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Notation. The theorem is an asymptotic statement, so we will be considering trees
of height H = log(N), for large H. We need to consider L levels of subtrees of height
k, where kL = H. Within the main tree, the roots of these subtrees will be at heights
k, 2 · k, 3 · k . . .H. We say that the subtree is at level i if its root is at height (i + 1)k. This
subtree notation is similar to that used in Section 5.2.

Note that we will only need to consider right nodes to complete our argument. Recall
that during a complete tree traversal every single right node is eventually output as part
of the authentication data. This prompts us to categorize the right nodes in three classes.

1. Those already present after the key generation: free nodes.

2. Those explicitly calculated (e.g. with treehash): computed nodes.

3. Those retained from another node’s calculation (e.g from another node’s treehash):
saved nodes.

Notice how type 2 nodes require computational effort, whereas type 1 and type 3 nodes
require some period of storage. We need further notation to conveniently reason about
these nodes. Let ai denote the number of level i subtrees which contain at least 1 non-root
computed (right) node. Similarly, let bi denote the number of level i subtrees which contain
zero computed nodes. Just by counting the total number of level i subtrees we have the
relation.

ai + bi = N/2(i+1)k. (36)

Computational costs. Let us tally the cost of some of the computed nodes. There
are ai subtrees containing a node of type 2, which must be of height at least ik. Each such
node will cost at least 2ik+1 − 1 operations to compute. Rounding down, we find a simple
lower bound for the cost of the nodes at level i.

Cost >
L−1
∑

i=0

(ai2
ik). (37)

Storage costs. Let us tally the lifespans of some of the retained nodes. Measuring
units of Space×Rounds is natural when considering average space consumed. In general, a
saved node, S, results from a calculation of some computed node C, say, located at height
h. We know that S has been produced before C is even needed, and S will never become
an authentication node before C is discarded. We conclude that such a node S must be
therefore be stored in memory for at least 2h rounds.

Even (most of) the free nodes at height h remain in memory for at least 2h+1 rounds.
In fact, there can be at most one exception: the first right node at level h.

Now consider one of the bi subtrees at level i containing only free or stored nodes.
Except for the leftmost subtree at each level, which may contain a free node waiting in
memory less than 2(i+1)k rounds, every other node in this subtree takes up space for at
least 2(i+1)k rounds. There are 2k − 1 nodes in a subtree and thus we find a simple lower
bound on the Space× Rounds.

Space× Rounds ≥
L−1
∑

i=0

(bi − 1)(2k − 1)2(i+1)k. (38)

Note that the (bi−1) term reflects the possible omission of the leftmost level i subtree.

24



Mixed Bounds. We can now use simple algebra with Equations (36), (37), and (38)
to yield combined bounds. First the cost is related to the bi, which is then related to a
space bound.

2kCost >
L−1
∑

i=0

ai2
(i+1)k =

L−1
∑

i=0

N − 2(i+1)kbi. (39)

As series of similar algebraic manipulations finally yield (somewhat weaker) very useful
bounds.

2kCost +
L−1
∑

i=0

2(i+1)kbi > NL. (40)

2kCost +
L−1
∑

i=0

2(i+1)k

2k−1
+

Space× Rounds

2k−1
> NL (41)

2kCost + 2N +
Space× Rounds

2k−1
> NL (42)

2kAverageCost +
AverageSpace

2k−1
> (L− 2) ≥

L

2
(43)

k2k+1AverageCost +
k

2k−2
AverageSpace >

L

2
· 2k = H. (44)

This last bound on the sum of average cost and space requirements will allow us to find a
contradiction.

Proof by Contradiction. Let us assume the opposite of the statement of Theorem
5.1. Then there is some α such that the space is bounded above by α log(N). Secondly, the
time complexity is supposed to be sub-logarithmic, so for every small β the time required
is less than β log(N) for sufficiently large N .

With these assumptions we are now able to choose a useful value of k. We pick k to be
large enough so that α > 1/k2k+3. We also choose β to be less than 1/k2k+2. With these
choices we obtain two relations.

k2k+1AverageCost <
H

2
(45)

k/2k−2AverageSpace <
H

2
(46)

By adding these two last equations, we contradict Equation (44).
QED.

5.5 Improvement of the Log Traversal Algorithm

In this section we describe improvements of the algorithm described in Section 5.3 which
are very useful for practical implementations. The main differences are the following.
Since left authentication nodes can be computed much cheaper than right nodes, the
computation of left and right authentication nodes is done differently. In many cases the
number of expensive leaf computations is reduced. Instead of using a separate stack for
each instance of the treehash algorithm one shared stack is used. Input for the algorithm
is an index s ∈ {0, 1, . . . , 2H − 2}. The algorithm determines the authentication path
Auth = (Auth0, . . . ,AuthH−1) for leaf s + 1.
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As before, we denote the nodes in the Merkle tree by νh[j], where h = H, . . . , 0 denotes
the height of the node in the tree of height H. Leaves have height 0 and the root has
height H. MSS uses a cryptographic hash function g : {0, 1}∗ → {0, 1}n.

The algorithm determines τ = max{h : 2h|(s + 1)} which is the height of the first
ancestor of the sth leaf which is a left child. If leaf s is a left child itself, then τ = 0.
Figure 7 shows an example.

s = 3

Right node

Left node

τ = 2

Figure 7: The height of the first ancestor of leaf s that is a left child is τ = 2. The dashed
nodes denote the authentication path for leaf s. The arrows indicate the path from leaf s
to the root.

The value τ is used to determine on which heights the authentication path for leaf s+1
requires new nodes. The authentication path for leaf s+1 requires new right authentication
nodes on heights h = 0, . . . , τ − 1 and one new left authentication node on height τ .

Computing left and right authentication nodes

Computing left nodes. As explained above, we require the left node Authτ for the
next authentication path. If τ = 0, then we set Auth0 to Leafcalc(s). Let τ > 0. Then
leaf s is a right child. Also, Authτ−1 is the left child of Authτ . We assume that the right
child of Authτ is stored in Keepτ−1. Then the new node Authτ is computed as

Authτ = g
(

Authτ−1 ‖ Keepτ−1

)

. (47)

This requires only one hash evaluation. We also explain how Keep is updated. If
⌊s/2τ+1⌋ = 0 (mod 2), i.e. if the ancestor on height τ + 1 is a left child, then Authτ

is a right node and we store it in Keepτ .

Computing right nodes. Unlike authentication nodes that are left children, right
authentication nodes are computed from scratch, i.e. starting from the leaves. This is
because none of their child nodes were used in previous authentication paths. As before
we use the treehash algorithm (Section 3, Algorithm 3.1) for this task.

We use two different methods for computing right nodes. To distinguish those cases we
select a positive integer K ≥ 2 such that H−K is even. Suppose that we wish to compute a
right node on height h. If H−K ≤ h ≤ H−2, then the right node on height h is calculated
by Retainh.pop() which pops the top element from a stack Retainh. That stack has been
filled with the right nodes νh[3], . . . , νh[2H−h−1] during MSS key generation. This is very
useful since the nodes close to the root are expensive to compute.

For the computation of a right node on height h with h < H −K we use an instance
Treehashh of the treehash algorithm. It is allowed to store one node. Initially, during
MSS key generation, the second right node νh[3] is stored in Treehashh. The treehash

26



instances all share one stack. When it comes to determining a right authentication node
on height h this is simply done by Treehashh.pop() for h = 0, . . . ,min{H−K−1, τ−1}.
Then all treehash instances for heights h = 0, . . . ,min{H −K− 1, τ − 1} are initialized for
the computation of the next right node. The index of the leaf they have to begin with is
s + 1 + 3 · 2h and the initialization is done using the method Treehashh.initialize(s + 1 +
3 ·2h). Then the algorithm updates the treehash instances using the Treehashh.update()
method. One update corresponds to one round of Algorithm 3.1, i.e. to computing one
leaf and computing this leaf’s parent nodes using tail nodes stored on the stack.

We allow a budget of (H − K)/2 updates in each round. We use the strategy from
Section 5.3 to decide which of the H − K treehash instances receives an update. For
this, we need the method Treehashh.height() which returns the height of the lowest
tail node stored by this treehash instance, either on the stack or in the treehash in-
stance itself. If Treehashh does not store any tail nodes Treehashh.height() returns
h and if Treehashh is finished or not initialized Treehashh.height() returns ∞ to skip
these instances. The treehash instance that receives an update is the instance where
Treehashh.height() returns the smallest value. If there is more than one such instance,
we choose the one with the lowest index.

The algorithm

Initialization. The initialization of our algorithm is done during the MSS key pair
generation. We store the authentication path for the first leaf (s = 0): Authh = νh[1], h =
0, . . . , H − 1. Depending on the parameter K, we store the next right authentication node
for each height h = 0, . . . , H −K − 1 in the treehash instances: Treehashh.push(νh[3]).
Finally we store the right authentication nodes close to the root using the stacks Retainh:
Retainh.push(νh[2j + 3]) for h = H −K, . . . , H − 2 and j = 2H−h−1 − 2, . . . , 0.

Update and output phase. Algorithm 5.6 contains the precise description. Input
is the index of the current leaf s ∈ {0, . . . , 2H−2}, the parameters H, K and the algorithm
state Auth,Keep,Retain,Treehash prepared in previous rounds or the initialization.
Output is the authentication path for the next leaf s + 1.

Correctness and analysis

In this section we show the correctness of Algorithm 5.6 and estimate its time and space
requirements. First we show that the budget of (H −K)/2 updates per round is sufficient
for the treehash instances to compute the nodes on time. Then we show that it is possible
for all treehash instances to share a single stack. Next, we consider the time and space
requirements of Algorithm 5.6. In detail we show that

i) The number of tail nodes stored on the stack is bounded by H −K − 2.

ii) The number of hashes per round is bounded by 3(H −K − 1)/2.

iii) The number of nodes stored in Keep is bounded by ⌊H/2⌋+ 1.

To estimate the space complexity, we have to add the H nodes stored in Auth, the H−K
nodes stored in Treehash and the 2K −K − 1 nodes stored in Retain. To estimate the
time complexity, we have to add the (H −K)/2 leaf computations required to determine
right nodes and one leaf and one hash to compute left nodes (Lines 3, 4a in Algorithm
5.6). Summing up the total time and space requirements results in the following theorem.
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Algorithm 5.6 Authentication path computation

Input: s ∈ {0, . . . , 2H − 2}, H, K and the algorithm state.
Output: Authentication path for leaf s + 1

1. Let τ = 0 if leaf s is a left node or let τ be the height of the first parent of leaf s
which is a left node:
τ ← max{h : 2h|(s + 1)}

2. If the parent of leaf s on height τ + 1 is a left node, store the current authentication
node on height τ in Keepτ :
if ⌊s/2τ+1⌋ is even and τ < H − 1 then Keepτ ← Authτ

3. If leaf s is a left node, it is required for the authentication path of leaf s + 1:
if τ = 0 then Auth0 ← Leafcalc(s)

4. Otherwise, if leaf s is a right node, the authentication path for leaf s + 1 changes on
heights 0, . . . , τ :
if τ > 0 then
(a) The authentication path for leaf s+1 requires a new left node on height τ . It is

computed using the current authentication node on height τ − 1 and the node
on height τ −1 previously stored in Keepτ−1. The node stored in Keepτ−1 can
then be removed:
Authτ ← g(Authτ−1||Keepτ−1), remove Keepτ−1

(b) The authentication path for leaf s + 1 requires new right nodes on heights
h = 0, . . . , τ − 1. For h < H −K these nodes are stored in Treehashh and for
h ≥ H −K in Retainh:
for h = 0 to τ − 1 do

if h < H −K then Authh ← Treehashh.pop()
if h ≥ H −K then Authh ← Retainh.pop()

(c) For heights 0, . . . ,min{τ−1, H−K−1} the treehash instances must be initialized
anew. The treehash instance on height h is initialized with the start index
s + 1 + 3 · 2h < 2H :
for h = 0 to min{τ − 1, H −K − 1} do Treehashh.initialize(s + 1 + 3 · 2h)

5. Next we spend the budget of (H−K)/2 updates on the treehash instances to prepare
upcoming authentication nodes:
repeat (H −K)/2 times
(a) We consider only stacks which are initialized and not finished. Let k be the

index of the treehash instance whose lowest tail node has the lowest height. In
case there is more than one such instance we choose the instance with the lowest
index:

k ← min

{

h : Treehashh.height() = min
j=0,...,H−K−1

{Treehashj .height()}

}

(b) The treehash instance with index k receives one update:
Treehashk.update()

6. The last step is to output the authentication path for leaf s + 1:
return Auth0, . . . ,AuthH−1.
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Theorem 5.2 Let H ≥ 2 and K ≥ 2 such that H −K is even. Algorithm 5.6 stores at
most 3H+⌊H/2⌋−3K−2+2K nodes, where each node requires n bits of memory. Further,
the algorithm requires at most (H −K)/2 + 1 leaf computations and 3(H −K − 1)/2 + 1
hash function evaluations per round to successively compute authentication paths.

Nodes are computed on time. If Treehashh is initialized in round s, the au-
thentication node on height h computed by this instance is required in round s + 2h+1.
In these 2h+1 rounds there are (H − K)2h updates available. Treehashh requires 2h

updates. During the 2h+1 rounds, 2h+1/2i+1 treehash instances are initialized on heights
i = 0, . . . , h−1, each requiring 2i updates. In addition, active treehash instances on heights
i = h + 1, . . . , H −K − 1 might receive updates until their lowest tail node has height h,
thus requiring at most 2h updates.

Summing up the number of updates required by all treehash instances yields

h−1
∑

i=0

2h+1

2i+1
· 2i + 2h +

H−K−1
∑

i=h+1

2h = (H −K)2h (48)

as an upper bound for the number of updates required to finish Treehashh on time. For
h = H −K − 1 this bound is tight.

Sharing a single stack works. To show that it is possible for all treehash instances
to share a single stack, we have to show that if Treehashh receives an update and has
tail nodes stored on the stack, all these tail nodes are on top of the stack.

When Treehashh receives its first update, the height of the lowest tail node of
Treehashi, i ∈ {h + 1, . . . , H − K − 1} is at least h. This means that Treehashh

is completed before Treehashi receives another update and thus tail nodes of higher
treehash instances do not interfere with tail nodes of Treehashh.

While Treehashh is active and stores tail nodes on the stack, it is possible that
treehash instances on lower heights i ∈ {0, . . . , h−1} receive updates and store nodes on the
stack. If Treehashi receives an update, the height of the lowest tail node of Treehashh

has height ≥ i. This implies that Treehashi is completed before Treehashh receives
another update and therefore doesn’t store any tail nodes on the stack.

Space required by the stack. We will show that the stack stores at most one tail
node on each height h = 0, . . . , H −K− 3 at a time. Treehashh, h ∈ {0, . . . , H −K− 1}
stores up to h tail nodes on different heights to compute the authentication node on height
h. The tail node on height h− 1 is stored by the treehash instance and the remaining tail
nodes on heights 0, . . . , h− 2 are stored on the stack. When Treehashh receives its first
update, the following two conditions hold: (1) all treehash instances on heights < h are
either empty or completed and store no tail nodes on the stack. (2) All treehash instances
on heights > h are either empty or completed or have tail nodes of height at least h. If a
treehash instance on height i ∈ {h+1, . . . , H−K−1} stores a tail node on the stack, then
all treehash instances on heights i + 1, . . . , H −K − 1 have tail nodes of height at least i,
otherwise the treehash instance on height i wouldn’t have received any updates in the first
place. This shows that there is at most one tail node on each height h = 0, . . . , H −K − 3
which bounds the number of nodes stored on the stack by H −K − 2. This bound is tight
for round s = 2H−K+1 − 2, before the update that completes the treehash instance on
height H −K − 1.

29



Number of hashes required per round. For now we assume that the maximum
number of hash function evaluations is required in the following case: TreehashH−K−1

receives all u = (H − K)/2 updates and is completed in this round. On input an index
s, the number of hashes required by the treehash algorithm is equal to the height of
the first parent of leaf s which is a left node. On height h, a left node occurs every 2h

leaves, which means that every 2h updates at least h hashes are required by treehash.
During the u available updates, there are ⌈u/2h⌉ updates that require at least h hashes for
h = 1, . . . , ⌈log2 u⌉. The last update requires H −K − 1 = 2u− 1 hashes to complete the
treehash instance on height H −K − 1. So far only ⌈log2 u⌉ of these hashes were counted,
so we have to add another 2u − 1 − ⌈log2 u⌉ hashes. In total, we get the following upper
bound for the number of hashes required per round.

B =

⌈log2 u⌉
∑

h=1

⌈ u

2h

⌉

+ 2u− 1− ⌈log2 u⌉ (49)

In round s = 2H−K+1 − 2 this bound is tight. This is the last round before the treehash
instance on height H − K − 1 must be completed and as explained above, all available
updates are required in this case. The desired upper bound is estimated as follows:

B ≤

⌈log2 u⌉
∑

h=1

( u

2h
+ 1
)

+ 2u− 1− ⌈log2 u⌉

= u

⌈log2 u⌉
∑

h=1

1

2h
+ 2u− 1 = u

(

1−
1

2⌈log2 u⌉

)

+ 2u− 1

≤ u

(

1−
1

2u

)

+ 2u− 1 = 3u−
3

2
=

3

2
(H −K − 1)

The next step is to show that the above mentioned case is indeed the worst case. If a
treehash instance on height < H − K − 1 receives all updates and is completed in this
round, less than B hashes are required. The same holds if the treehash instance receives
all updates but is not completed in this round. The last case to consider is the one
where the u available updates are spend on treehash instances on different heights. If
the active treehash instance has a tail node on height j, it will receive updates until it
has a tail node on height j + 1, which requires 2j updates and 2j hashes. Additional
t ∈ {1, . . . , H − K − j − 2} hashes are required to compute the parent of this node on
height j + t + 1, if the active treehash instance stores tail nodes on heights j + 1, . . . , j + t
on the stack and in the treehash instance itself. The next treehash instance that receives
updates has a tail node of height ≥ j. Since the stack stores at most one tail node for
each height, this instance can receive additional hashes only if there are enough updates to
compute a tail node on height ≥ j + t, the height of the next tail node possibly stored on
the stack. But this is the same scenario that appears in the above mentioned worst case,
i.e. if a node on height j + 1 is computed, the tail nodes on the stack are used to compute
its parent on height j + t + 1 and the same instance receives the next update.

Space required to compute left nodes. First we show that whenever an authen-
tication node is stored in Keeph, h = 1, . . . , H−2, the node stored in Keeph−1 is removed
in the same round. This immediately follows from Steps 2 and 4a in Algorithm 5.6. Second
we show that if a node gets stored in Keeph, h = 0, . . . , H − 3, then Keeph+1 is empty.
To see this we have to consider in which rounds a node is stored in Keeph+1. This is

30



true for rounds s ∈ Aa = {2h+1 − 1 + a · 2h+3, . . . , 2h+2 − 1 + a · 2h+3}, a ∈ N0. In rounds
s′ = 2h−1+b ·2h+2, b ∈ N0, a node gets stored in Keeph. It is straight forward to compute
that s′ ∈ Aa implies that 2a + 1/4 ≤ b ≤ 2a + 3/4 which is a contradiction to b ∈ N0.

As a result, at most ⌊H/2⌋ nodes are stored in Keep at a time and two consecutive
nodes can share one entry. One additional entry is required to temporarily store the
authentication node on height h (Step 2) until node on height h− 1 is removed (Step 4a).

Computing leaves using an PRNG

In Section 4, we showed how a PRNG can be used during MSS key pair and signature
generation to reduce the private key size. We will now show how to use this concept in
Algorithm 5.6 to compute the required leaves using an PRNG. Let Seeds denote the seed
required to compute the one-time key pair corresponding to the sth leaf.

During the authentication path computation, leaves which are up to 3 · 2H−K−1 steps
away from the current leaf must be computed by the treehash instances. Calling the
PRNG that many times to obtain the seed required to compute this leaf is too inefficient.
Instead we use the following scheduling strategy that requires H −K calls to the PRNG
in each round to compute the seeds. We have to store two seeds for each height h =
0, . . . , H −K − 1. The first (SeedActive) is used to successively compute the leaves for
the authentication node currently constructed by Treehashh and the second (SeedNext)
is used for upcoming right nodes on this height. SeedNext is updated using the PRNG in
each round. During the initialization, we set SeedNexth = Seed3·2h for h = 0, . . . , H −
K − 1. In each round, at first all seeds SeedNexth are updated using the PRNG. If
in round s a new treehash instance is initialized on height h, we copy SeedNexth to
SeedActiveh. In that case SeedNexth = Seedϕ+1+3·2h holds and thus is the correct
seed to begin computing the next authentication node on height h.

The time and space requirements of Algorithm 5.6 change as follows. We have to
store additional 2(H −K) seeds and each seed requires n bit of memory. We also require
additional H −K calls to the PRNG in each round.

Theorem 5.3 Let H ≥ 2 and K ≥ 2 such that H −K is even. The memory requirements
of Algorithm 5.6 in combination with a PRNG are

(

5H +

⌊

H

2

⌋

− 5K − 2 + 2K

)

· n bit. (50)

Further, it requires at most (H −K)/2 + 1 leaf computations, 3(H −K − 1)/2 + 1 hash
function evaluations, and H − K calls to the PRNG per round to successively compute
authentication paths.

6 Tree chaining

In Section 3 we saw that MSS public key generation requires the computation of the full
Merkle hash tree. This means that 2H leaves and 2H−1 inner nodes have to be determined,
which is very time consuming when H is large. The tree chaining method [4] solves this
problem. The basic idea is similar to the Fractal Merkle Tree Traversal described in Section
5.2. However, in contrast to the Fractal Tree Traversal Method, tree chaining does not
split the Merkle tree into smaller subtrees, but instead uses smaller Merkle trees that are
independent of each other. The Merkle signature scheme that uses tree chaining is referred
to as CMSS.
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The idea

We explain the tree chaining idea. CMSS uses T ≥ 2 layers of Merkle trees. Each Merkle
tree on each layer is constructed using the Method from Sections 3 and 4. The hashes of
a sequence of one-time verification keys are the leafs. We call the corresponding one-time
signature keys the signature keys of the Merkle tree. Those signature keys are calculated
using a pseudo random number generator. We call the respective seed the seed of the
Merke tree.

The root of the single tree on the top layer 1 is the public CMSS key. The signature
keys of the Merkle trees on the bottom layer T are used to sign documents. The signature
keys of the Merkle trees on the intermediate layers i, 1 ≤ i < T sign the roots of the Merkle
trees on layer i + 1.

This is what a tree chaining signature looks like:

σ =
(

s, SigT , YT ,AuthT

SigT−1, YT−1,AuthT−1
...

Sig1, Y1,Auth1

)

.

(51)

SigT is the one-time signature of the document to be signed. It is generated using a
signature key of a Merkle tree on the bottom layer T . The corresponding verification key
is YT . Also, AuthT is the authentication path that allows a verifier to construct the path
from the verification key YT to the root of the corresponding Merkle tree on the bottom
layer. Now that root is not known to the verifier. Therefore, the one-time signature SigT−1

of that root is also included in the signature σ. It is constructed using a signature key of
a Merkle tree on level T − 1. The corresponding verification key YT−1 and authentication
path AuthT−1 are also included in the signature σ. The root of the tree on layer T − 1 is
also not known to the verifier, unless T = 2 in which case T − 1 = 1 and that root is the
public key. So further one-time signatures of roots Sigi, one-time verification keys Yi, and
authentication paths Authi, i = T − 1, . . . , 1 are included in the signature σ.

The signature σ is verified as follows. The verifier checks, that SigT can be verified
using YT . Next, he uses YT and AuthT to construct the root of a Merkle tree on layer T .
He verifies the signature SigT−1 of that root using the verification key YT−1 and constructs
the root of the corresponding Merkle tree on layer T − 1 from YT−1 and AuthT−1. The
verifier iterates this procedure until the root of the single tree on layer 1 is constructed. The
signature is verified by comparing this root to the public key. If any of those comparisons
fails then the signature σ is rejected. Otherwise, it is accepted.

We discuss the advantage of the tree chaining method. For this purpose, we first
compute the number of signatures that can be verified using one public key when the tree
chaining method is applied. All Merkle trees on layer i have the same height Hi, 1 ≤ i ≤ T .
As mentioned already, there is a single Merkle tree on the top layer 1. Since the Merkle
trees on layer i are used to sign the roots of the Merkle trees on layer i + 1, 1 ≤ i < T , the
number of Merkle trees on layer i + 1 is 2H1+H2+...+Hi . So the total number of documents
that can be signed/verified is 2H where H = H1 + H2 + . . . + HT .

The advantage of the tree chaining construction is the following. The generation of
a public MSS key that can verify 2H documents requires the construction of a tree of
height H, which in turn requires the computation of 2H one-time key pairs and 2H+1 − 1
evaluations of the hash fuction. When tree chaining is used, the construction of a public
CMSS key that can verify 2H documents only requires the construction of the single Merkle
tree on the top layer which is of height H1. Also, in the tree chaining method, signature
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generation requires knowledge of the one-time signature of the root of one Merkle tree on
each layer. Those roots and one-time signatures can be successively computed as they are
used, whereas the root of the first tree on each layer is generated during the key generation.
Hence, the CMSS key pair generation requires the computation of 2H1 + . . . + 2HT one-
time key pairs and 2H1+1 + . . . + 2HT +1 − T evaluations of the hash function. This is a
drastic improvement compared to the original MSS key pair generation as illustrated in
the following example.

Example 6.1 Assume that the heights of all Merkle trees are equal, so H1 = . . . = HT =
H. The number of signatures that can be generated with this key pair is 2TH . The CMSS
key pair generation requires T2H one-time key pairs and T2H+1 − T evaluations of the
hash function. The original MSS key pair generation requires 2TH one-time key pairs and
2TH+1 − 1 evaluations of the hash function.

sT

s2

s1

RootT

Root2

Root1

TreeT

Tree2

Tree1

Sig2

Sig1

Figure 8: The tree chaining method. Treei denotes the active tree on layer i, Rooti its
root, and Sigi−1 this root’s one-time signature generated with the si−1th signature key of
the tree on layer i− 1.

CMSS key pair generation

For the CMSS key pair generation, the number of layers T and the respective heights Hi,
1 ≤ i ≤ T of the trees on layer i are selected. With H = H1 +H2 + . . .+HT the number of
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signatures that can be generated/verified using the key pair to be constructed is 2H . For
each layer, one initial Merkle tree Treei is constructed as described in Sections 3 and 4.
The CMSS public key is the root of Tree1. The CMSS secret key is the sequence of the
random seeds used to construct the T trees. The signer also stores the one-time signatures
of the roots of all those trees generated with the first signature key of the tree on the next
layer.

CMSS key pair generation requires the computation of 2H1 + . . . + 2HT one-time key
pairs and 2H1+1 + . . . + 2HT +1 − T evaluations of the hash function.

CMSS signature generation

We use the notation of the previous sections. When a signature is issued, the signer knows
one active Merkle tree Treei for each layer and the seed Seedi from which its signature
keys can be generated, i = 1, 2, . . . , T . The signer also knows the signature Sigi of the
root of Treei+1, and the verification key Yi for that signature, 1 ≤ i ≤ T − 1. Further,
the signer knows the index si, 1 ≤ i ≤ T − 1, of the signature key used to generate the
signature Sigi of the root of the tree Treei+1 and the index sT of the signature key used
to issue the next document signature. The signer constructs the corresponding signature
key from the seed SeedT , he generates the one-time signature SigT of the document to be
signed and he generates the signature as in Equation (51). The index s in this signature
can be recursively computed. Set t1 = s1 and

ti+1 = ti2
Hi+1 + si+1, 1 ≤ i < T,

then s = tT .
After signing, the signer prepares for the next signature by partially constructing the

next tree on certain layers using the treehash algorithm of Section 3. He first computes
the sT th leaf of the next tree on layer T and executes the treehash algorithm with this leaf
as input. Then he increments sT . If sT = 2HT , then the construction of the next Merkle
tree on layer T is completed and its root is available. The signer computes the one-time
signature of this root using a signature key of the tree on layer T −1 and sets the index sT

to zero. In the same way, the signer constructs the next tree on layer T −1 and increments
the index sT−1. More generally, the signer partially constructs the next tree on layer i
and increments si whenever the construction of the next tree on layer i + 1 is complete,
1 < i < T . On layer 1, no new tree is required and the signer only increments the index s1

if the construction of a tree on layer 2 is completed. When s1 = 2H1 , CMSS cannot sign
new documents anymore.

Since a CMSS signature consists of T MSS signatures, the signature size increases by
a factor T compared to MSS. Also, the computation of the roots of the following trees and
their signatures increases the signatures generation time.

CMSS verification

The basics of the CMSS signature verification are straight forward and were already ex-
plained above.

We now explain how the verifier uses s to determine a positive integer si for each layer
i, such that Yi is the sith verification key of the active tree on that layer. The verifier
uses si to construct the path from Yi to the root of the corresponding tree on layer i (see
Section 3). The following formulas show how this can be accomplished.
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jT = ⌊s/2HT ⌋, ji = ⌊ji+1/2Hi⌋, i = T − 1, . . . , 1

sT = s mod 2HT , si = ji+1 mod 2Hi , i = T − 1, . . . , 1
(52)

7 Distributed signature generation

In this section, we describe distributed signature generation [4]. This method counteracts
the new problems that arise when using the tree chaining method, namely the increased
signature size and signature generation time. It is based on the observation that the one-
time signatures of the roots and the authentication paths in upper layers change only
infrequently. The idea is to distribute the operations required for the generation of these
one-time signatures and authentication paths evenly across each step. This significantly
improves the worst case signature generation time. Recall Section 2.2, where we showed
that the Winternitz one-time signature scheme uses the parameter w to provide a trade-
off between the signature generation time and the signature size. Using the method of
distributed signature generation it is possible to choose large values of w for upper layers,
which in turn results in smaller signatures. The combination of the tree chaining method,
the distributed signature generation, and the original MSS is called GMSS.

The idea

Fix a layer i ≥ 2. Denote the active tree on layer i by Treei. It is currently used to
sign roots or documents. The preceding tree on that layer is denoted by TreePrevi.
The next tree on layer i is TreeNexti. The idea of the distributed signature generation
is the following. When Treei is used, the root of TreeNexti is known. The root of
TreeNexti is signed while the signature keys of Treei are used. The root of TreeNexti

was calculated while TreePrevi was used to sign documents or roots.

Distributed root signing

We use the notation from above. We explain how the root of TreeNexti is signed while
Treei is used to sign. By construction, the necessary signature key from layer i − 1 is
known.

We distribute the computation of the signature of the root of TreeNexti across the
leaves of Treei. When the first leaf of Treei is used we initialize the Winternitz one-
time signature generation by calculating the parameters and executing the padding. Then
we calculate the number of hash function evaluations and calls to the PRNG required to
compute the one-time signature key and the one-time signature. We divide those numbers
by 2Hi where Hi is the height of Treei to estimate the number of operations required
per step. When a leaf of Treei is used, the appropriate amount of computation for the
signature of the root of TreeNexti is performed. The distributed generation of the one-
time signatures is visualized in Figure 9.

We estimate the running time of the distributed root signing. The one-time signature
of a root of a tree on layer i is generated using the Winternitz parameter wi−1 of layer
i − 1. According to Section 2.2 the generation of this signature requires (2wi−1 − 1)twi−1

hash function evaluations in the worst case. As shown in Section 4 the generation of the
one-time signature requires twi−1

+1 calls to the PRNG. Since each tree on layer i has 2Hi

leaves, the computation of its root signature is distributed across 2Hi steps. Therefore, the
total number of extra operations for each leaf of Treei to compute the root signature of
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RootNexti

TreeNexti

Treei

Treei−1

SigNexti−1

Figure 9: Distributed generation of SigNexti−1, the one-time signature of the root of
TreeNexti.

TreeNexti is at most

csig(i) =

⌈

(2wi−1 − 1)twi−1

2Hi

⌉

cHash +

⌈

twi−1
+ 1

2Hi

⌉

cPrng. (53)

Distributed root computation

We explain, how the root of TreeNexti is computed while TreePrevi is active. This is
quite simple. Both TreePrevi and TreeNexti have the same number of leaves. When
a leaf of TreePrevi is used, the leaf with the same index in TreeNexti is calculated
and passed to the treehash algorithm from Section 3.

If i < T , i.e. TreeNexti is not on the lowest level, the computation of each leaf
of TreeNexti can also be distributed. This is explained next. Suppose that we want
to construct the jth leaf of TreeNexti while we are using the jth leaf of TreePrevi.
This computation is distributed across the leaves of the tree TreeLower on layer i + 1
whose root is signed using the jth leaf of TreePrevi. When the first leaf of TreeLower

is used, we determine the number of hash function evaluations and calls to the PRNG
required to compute the jth leaf of TreeNexti. Recall that the calculation of this leaf
requires the computation of a Winternitz one-time key pair. We divide those numbers by
2Hi+1 to obtain the number of operations we will execute in each leaf of TreeLower.
Whenever a leaf of TreeLower is used, the computation of the jth leaf of TreeNext is
advanced by executing those operations.

Once the jth leaf of TreeNexti is generated, it is passed to the treehash algorithm.
This contributes to the construction of the root of TreeNexti. This construction is
complete, once we switch from TreePrevi to Treei. So in fact, when Treei is used, the
root of TreeNexti is known. The distributed computation of the roots is visualized in
Figure 10. While constructing TreeNexti, we also perform the initialization steps of the
authentication path algorithm of Section 5.5. That is, we store the authentication path of
leaf 0 and prepare the algorithm state.

We estimate the extra time required by the distributed root computation. Recall that
for the generation of a leaf of TreeNexti we first determine the corresponding Winternitz
one-time key pair. This key pair is constructed using the Winternitz parameter wi of layer
i. The generation of the one-time signature key requires twi

+ 1 calls to the PRNG. The
generation of the one-time verification key requires (2wi − 1)twi

hash function evaluations
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TreeNexti

TreeLower

TreePrevi

j

RootNexti

Figure 10: Distributed computation of RootNexti. Leaf j of tree TreeNexti is precom-
puted while using tree TreeLower. It is then used to partially compute RootNexti.

and the computation of a leaf of TreeNexti requires one additional evaluation of the hash
function. This has been shown in Sections 2.2 and 4. Since TreeLower has 2Hi+1 leaves,
the computation of a leaf of TreeNexti can be distributed over 2Hi+1 steps. Therefore,
the total number of extra operations for each leaf of TreeLower to compute a leaf of
TreeNexti is

c1
leaf(i) =

⌈

(2wi − 1)twi
+ 1

2Hi+1

⌉

cHash +

⌈

twi
+ 1

2Hi+1

⌉

cPrng. (54)

Once a leaf of TreeNexti is found, it is passed to the treehash algorithm. By the results
of Section 3 this costs at most

c2
leaf(i) = Hi · cHash (55)

additional evaluations of the hash function.

Distributed authentication path computation

Next, we describe the computation of the authentication path of the next leaf of tree Treei.
We use the algorithm described in Section 5.5. This algorithm requires the computation
of (Hi −Ki)/2 + 1 leaves per round to generate upcoming authentication paths on layer
i = 1, . . . , T . As described above, the computation of these leaves is distributed over the
2Hi+1 leaves (or steps) of tree TreeLower, the current tree on the next lower layer i + 1.
Again, this is possible only for leaves in layers i = 1, . . . , T − 1. The computation of the
leaves in layer T cannot be distributed.

When we use TreeLower for the first time we calculate the number of hash function
evaluations and calls to the PRNG required to compute the (Hi−Ki)/2+1 leaves. Recall
that we have to compute a Winternitz one-time key pair to obtain this leaf. Then we divide
these costs by 2Hi+1 to estimate the number of operations we have to spend for each leaf
of tree TreeLower. At the beginning we don’t know which leaves must be computed,
we only know how may. Therefore, we have to interact with Algorithm 5.6. We perform
the necessary steps to decide which leaf must be computed first. After computing this
leaf we pass it to the authentication path algorithm which updates the treehash instance
and determines the which leaf must be computed next. This procedure is iterated until
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all required leaves are computed. The distributed authentication path computation is
visualized in Figure 11.

Treei

TreeLower

required leaves

Figure 11: Distributed computation of the next authentication path. The (Hi − Ki)/2
required leaves are computed while using tree TreeLower.

We estimate the cost of the distributed authentication path computation. The algo-
rithm of Section 5.5 requires the computation of (Hi −Ki)/2 + 1 leaves for each authenti-
cation path. The leaves are computed using the Winternitz parameter wi of layer i. The
generation of one leaf requires twi

+1 calls to the PRNG and (2wi−1)twi
+1 hash function

evaluations, see Sections 2.2 and 4. The computation of the those (Hi −Ki)/2 + 1 leaves
is distributed over the 2Hi+1 steps in the tree on layer i + 1. Therefore, the total number
of operations for each leaf of TreeLower to compute the (Hi −Ki)/2 + 1 leaves is

c1
auth(i) =

Hi −Ki + 2

2
· c1

leaf(i). (56)

The completed leaves are passed to the treehash algorithm that computes their parent
nodes. The algorithm of Section 5.5 requires at most 3(Hi −Ki − 1)/2 + 1 evaluations of
the hash function for the computation of parents. Another Hi−Ki calls to the PRNG are
required to prepare upcoming seeds. These operations are not distributed but performed
at once. Hence, the total number of operations for each leaf of Treei is at most

c2
auth(i) =

3(Hi −Ki)− 1

2
· cHash + (Hi −Ki) · cPrng. (57)

Example 7.1 This example illustrates how the distributed signature generation improves
the signature generation time. Let H1 = . . . = HT = H. Further, all layers use the same
Winternitz parameter w and the same value for K. Let csig denote the worst case cost for
generating a one-time signature with Winternitz parameter w, let cauth denote the worst
case cost for generating an authentication path in a tree of height H using K, and let ctree

denote the cost for partially computing the next tree. The worst case cost for the GMSS
online and offline part then is

csig + cauth + ctree +
(T − 1)csig + (T − 1)cauth + (T − 2)ctree

2H
.
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When the signature generation is not distributed, as in the case of CMSS, the worst case
cost for the online and offline part is

Tcsig + Tcauth + (T − 1)ctree.

GMSS key pair generation

We explain GMSS key pair generation, establish the size of the keys, and the cost for
computing them. The following parameters are selected. The number T of layers, the
heights H1, . . . , HT of the Merkle trees on each layer, the Winternitz parameters w1, . . . , wT

for each layer, and the parameters K1, . . . , KT for the authentication path algorithm of
Section 5.5.

We use the approach introduced in Section 4 and use an PRNG for the one-time
signature generation. Therefore we must choose initial seeds Seedi, for each layer i =
1, . . . , T . The GMSS public key is the root Root1 of the single tree in layer i = 1. The
GMSS private key consists of the following entries:

Seedi , i = 1, . . . , T , SeedNexti , i = 2, . . . , T
Sigi , i = 1, . . . , T − 1 , RootNexti , i = 2, . . . , T

Authi , i = 1, . . . , T , AuthNexti , i = 2, . . . , T
Statei , i = 1, . . . , T , StateNexti , i = 2, . . . , T

(58)

The seeds Seedi are required for the generation of the one-time signature keys used to sign
the data and the roots. The seeds SeedNexti are required for the distributed generation of
subsequent roots. These seeds are available after the generation of the roots RootNexti.
The one-time signatures Sigi of the roots are required for the GMSS signatures. The
signatures Sigi do not have to be computed explicitly. They are an intermediate value
during the computation of the 0th leaf of tree Treei−1. The roots RootNexti of the
next tree in each layer are required for the distributed generation of the one-time signatures
SigNexti−1. Also, the authentication path for the first leaf of the first and second tree
in each layer is stored. Statei and StateNexti denote the state of the authentication
path algorithm of section 5.5 required to compute authentication paths in trees Treei and
TreeNexti, respectively. This state contains the seeds and the treehash instance and is
initialized during the generation of the root.

The construction of a tree on layer i requires the computation of 2Hi leaves and 2Hi−1
evaluations of the hash function to compute inner nodes. Each leaf computation requires
(2wi − 1) · twi

+ 1 hash function evaluations and twi
+ 1 calls to the PRNG. The total cost

for one tree on layer i is given as

ctree(i) =
(

2Hi (twi
(2wi − 1) + 2)− 1

)

cHash + 2Hi (twi
+ 1) cPrng. (59)

Since we construct two trees on layers i = 2, . . . , T and one on layer i = 1, the total cost
for the key pair generation is

ckeygen =

T
∑

i=1

ctree(i) +

T
∑

i=2

ctree(i). (60)

The memory requirements of the keys depend on the output size of the used hash function
n. A root is a single hash value and requires n bits. A seed also requires n bits. A one-time
signature Sigi requires twi−1

· n bits. An authentication path together with the algorithm
state requires

mauth(i) =

(

3Hi +

⌊

Hi

2

⌋

− 3Ki − 2 + 2Ki

)

· n bits. (61)
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For each layer i = 2, . . . , T , we store two seeds, two authentication paths and algorithm
states, one root and the one-time signature of one root. For layer i = 1, we store one seed
and one authentication path and algorithm state. The total sizes of the public and the
private key are

mpubkey = n bits, (62)

mprivkey =

(

T
∑

i=1

(mauth(i) + 1) +
T
∑

i=2

(mauth(i) + twi−1
+ 2)

)

n bits. (63)

GMSS signature generation

The GMSS signature generation is split in two parts, an online part and an offline part. The
online part is equivalent to the CMSS online part. The signer constructs the corresponding
signature key from the seed SeedT and generates the one-time signature SigT of the
document to be signed. Then he prepares the signature as in Equation (64). The offline
part takes care of the distributed computation of upcoming roots, one-time signatures of
roots and authentication paths as described above.

σs =
(

s, SigT , YT ,AuthT ,
SigT−1, YT−1,AuthT−1

...
Sig1, Y1,Auth1

)

.

(64)

The online part requires the generation of a single one-time signature. This signature
is generated using the Winternitz parameter of the lowest layer T . According to Section
2.2, this requires

conline = (2wT − 1)twT
· cHash + (twT

+ 1)cPrng. (65)

operations in the worst case. The size of an GMSS signature is computed with the same
formula we used for as the CMSS signatures. It consists of T authentication paths (Hi · n
bits) and T one-time signatures (twi

· n bits), one for each layer i = 1, . . . , T . Adding up
yields

msignature =
T
∑

i=1

(Hi + twi
) · n bits. (66)

To estimate the computational effort required for the offline part we assume the worst
case where we have to advance one leaf on all layers i = 1, . . . , T . The computation of
the one-time signature SigNexti can be distributed for each layers i = 1, . . . , T − 1. The
computation of the leaves required to construct the root RootNexti can be distributed
for all layers i = 2, . . . , T − 1. For layer i = T , the respective leaf of tree TreeNextT

must be computed at once. Together with the hash function evaluations for the treehash
algorithm, this requires at most

c3
leaf = ((2wT − 1)twT

+ HT + 1)cHash + (twT
+ 1)cPrng (67)

operations. The leaves required for the computation of upcoming authentication paths can
be distributed for all layers i = 1, . . . , T − 1. For layer i = T , the (HT −KT )/2 + 1 leaves
must be computed at once. Together with the hash function evaluations for the treehash
algorithm, this requires at most

c3
auth =

HT −KT + 2

2
· c3

leaf +
3(HT −KT )− 1

2
· cHash

+ (HT −KT ) · cPrng

(68)
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operations. In summary, the number of operations required by the offline part in the worst
case are

coffline =
T
∑

i=2

csig(i) +
T−1
∑

i=2

(

c1
leaf(i) + c2

leaf(i)
)

+ c3
leaf

+
T−1
∑

i=1

(

c1
auth(i) + c2

auth(i)
)

+ c3
auth.

(69)

The last step is to estimate the space required by the offline part. We have to store
the partially constructed one-time signature SigNexti for layers i = 1, . . . , T − 1 which
requires at most twi−1

· n bits. We also have to store the treehash stack for the generation
of the root RootNexti for layers i = 2, . . . , T which requires Hi · n bits. We further
require memory to store partially constructed leaves. One leaf requires at most twi

· n
bits. For the generation of RootNexti we have to store at most one leaf for each layer
i = 2, . . . , T − 1. For the authentication path, we have to store at most one leaf for each
layer i = 1, . . . , T−1. Note that since we compute the leaves required for the authentication
path successively, we have to store only one partially constructed leaf at a time. Finally,
we need to store the partial state StateNexti of the authentication path algorithm for
layers i = 2, . . . , T which requires at most mauth(i) bits (see Equation (61)). In summary,
the memory required by the offline part in the worst case is

moffline =

(

T
∑

i=2

(

twi−1
+ Hi + mauth(i)

)

+

T−1
∑

i=2

twi
+

T−1
∑

i=1

twi

)

bits. (70)

GMSS signature verification

Since the main idea of GMSS is to distribute the signature generation, the signature ver-
ification doesn’t change compared to CMSS. The verifier successively verifies a one-time
signature and uses the corresponding authentication path and Equation (52) to compute
the root. This is done until the root of the tree in the top layer is computed. If this root
matches the signers public key, the signature is valid.

The verifier must verify T one-time signatures which in the worst case requires (2wi −
1)twi

evaluations of the hash function, for i = 1, . . . , T . Another Hi evaluations of the hash
function are required to reconstruct the path to the root using the authentication path. In
total, the number of hash function evaluations required in the worst case is

cverify =
T
∑

i=1

((2wi − 1)twi
+ Hi) cHash. (71)

8 Security of the Merkle Signature Scheme

This section deals with the security of the Merkle signature scheme. We will show that the
Lamport–Diffie one-time signature scheme is existentially unforgeable under an adaptive
chosen message attack (CMA-secure) as long as the used one-way function is preimage
resistant. Then we show that the Merkle signature scheme is CMA-secure as long as the
used hash function is collision resistant and the underlying one-time signature scheme is
CMA-secure. Finally, we estimate the security level of the Merkle signature scheme for a
given output length n of the hash function.
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8.1 Notations and definitions

We start with some security notions and definitions.

Security notions for hash functions

We present three security notions for hash functions: preimage resistance, second preimage

resistance, and collision resistance. The definitions are taken from [30]. We write x
$
←− S

for the experiment of choosing a random element from the finite set S with the uniform
distribution. Let G be a family of hash functions, that is, a parameterized set

G =
{

gk : {0, 1}∗ → {0, 1}n|k ∈ K
}

(72)

where n ∈ N and K is a finite set. The elements of K are called keys. An adversary Adv

is a probabilistic algorithm that takes any number of inputs.
We define preimage resistance. In fact, our notion of preimage resistance is a special

case of the preimage resistance defined in [30] which is useful in our context. Consider an
adversary that attempts to find preimages of the hash functions in G. The adversary takes
as input a key k ∈ K and the image y = gk(x) of a string x ∈ {0, 1}n. Both k and x are
chosen randomly with the uniform distribution. The adversary outputs a preimage x′ of y
or failure. The success probability of this adversary is denoted by

Pr[k
$
←− K, x

$
←− {0, 1}n, y ←− gk(x), x′ $

←− Adv(k, y) : gk(x
′) = y]. (73)

Let t, ǫ be positive real numbers. The family G is called (t, ǫ) preimage resistant, if the
success probability (73) of any adversary Adv that runs in time t is at most ǫ.

Next, we define second preimage resistance. Consider an adversary that attempts to
find second preimages of the hash functions in G. The adversary takes as input a key
k ∈ K and a string x ∈ {0, 1}n, both chosen randomly with the uniform distribution. He
outputs a second preimage x′ under gk of gk(x) which is different from x or failure. The
success probability of this adversary is denoted by

Pr[k
$
←− K, x

$
←− {0, 1}n, x′ $

←− Adv(k, x) : x 6= x′ ∧ gk(x) = gk(x
′)]. (74)

Let t, ǫ be positive real numbers. The family G is called (t, ǫ) second-preimage resistant, if
the success probability (74) of any adversary Adv that runs in time t is at most ǫ.

Finally, we define collision resistance. Consider an adversary that attemps to find
collisions of the hash functions in G. The adversary takes as input a key k ∈ K, chosen
randomly with the uniform distribution. He outputs a collision of gk, that is, a pair
x, x′ ∈ {0, 1}∗ with x 6= x′ and g(x) = g(x′) or failure. The success probability of this
adversary is denoted by

Pr[k
$
←− K, (x, x′)

$
←− Adv(k) : x 6= x′ ∧ gk(x) = gk(x

′)]. (75)

Let t, ǫ be positive real numbers. The family G is called (t, ǫ) collision resistant, if the
success probability (75) of any adversary Adv that runs in time t is at most ǫ.

Signature schemes

Let Sign be a signature scheme. So Sign is a triple (Gen, Sig, Ver). Gen is the key pair
generation algorithm. It takes as input 1n, the string of n successive 1s where n ∈ N is a
security parameter. It outputs a pair (sk, pk) consisting of a private key sk and a public
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key pk. Sig is the signature generation algorithm. It takes as input a message M and a
private key sk. It outputs a signature σ for the message M . Finally, Ver is the verification
algorithm. Its input is a message M , a signature σ and a public key pk. It checks whether
σ is a valid signature for M using the public key pk. It outputs true if the signature is
valid and false otherwise.

Existential unforgeability

Let Sign = (Gen,Sig,Ver) be a signature scheme and let (sk, pk) be a key pair generated
by Gen. We define existential unforgeability under an adaptive chosen message attack of
Sign. This security model assumes a very powerful forger. The forger has access to the
public key and a signing oracle O(sk, ·) that, in turn, has access to the private key. On
input of a message the oracle returns the signature of that message. It is the goal of the
forger to win the following game. The forger chooses at most q messages and lets the
signing oracle find the signatures of those messages. The maximum number q of queries
is also an input of the forger. The oracle queries may be adaptive, that is, a message may
depend on the oracles answers to previously queried messages. The forger outputs a pair
(M ′, σ′). The forger wins if M is different from all the messages in the oracle queries and
if Ver(M ′, σ′, pk) = true. We denote such a forger by For

O(sk,·)(pk).
Let t and ǫ be positive real numbers and let q be a positive integer. The signature

scheme Sign is (t, ǫ, q) existentially unforgeable under an adaptive chosen message attack
if for any forger that runs in time t, the success probability for winning the above game
(which depends on q) is at most ǫ. If Sign has the above property it is also called a (t, ǫ, q)
signature scheme.

For one-time signatures we must have q = 1 since the signature key of a one-time
signature scheme must be used only once. For the Merkle signature scheme we must have
q ≤ 2H .

8.2 Security of the Lamport–Diffie one-time signature scheme

In this section we discuss the security of LD–OTS from Section 2.1. We slightly modify this
scheme. Select a security parameter n ∈ N. Let K = K(n) be a finite set of parameters.
Let

F =
{

fk : {0, 1}n → {0, 1}n|k ∈ K
}

be a family of one-way functions. The key generation of the modified LD–OTS works as
follows. On input of 1n for a security parameter n a key k ∈ K(n) is selected randomly
with the uniform distribution. Then LD–OTS is used with the one-way function fk. The
secret and public keys are generated as described in Section 2.1. The key k is included in
the public key. We show that the existential unforgeability under adaptive chosen message
attacks of this LD-OTS variant can be reduced to the preimage resistance of the family F .

Suppose that there exists a forger For
O(X,·)(Y ) of LD-OTS. Then an adversary AdvPre

that determines preimages of functions in F can be constructed as follows. Fix a security
parameter n. Input for AdvPre are a key k and the image y = fk(x) of a string x ∈ {0, 1}n.
Both k and x are selected randomly with the uniform distribution. A LD–OTS key pair
(X, Y ) is generated using the one-way function fk. The public key Y is of the form
Y = (yn−1[0], yn−1[1], . . . , y0[0], y0[1]). The adversary selects indices a ∈ {0, . . . , n−1} and
b ∈ {0, 1} randomly with the uniform distribution. He replaces the string ya[b] with the
target string y. Next, AdvPre runs the forger For

O(X,·)(Y ) with the modified public key.
If the forger asks its oracle to sign a message M = (mn−1, . . . , m0) and if ma = 1− b, then
the adversary, playing the role of the oracle, signs the message and returns the signature.
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The adversary can sign this message since he knows the original key pair and because of
ma = 1 − b, the modified string in the public key is not used. However, if ma = b then
the adversary cannot sign M . So his answer to the oracle query is failure which also
causes the forger to abort. If the forger’s oracle query was successful or if the forger does
not ask the oracle at all the forger may produce a message M ′ = (m′

n−1, . . . , m
′
0) and

the signature (σ′
n−1, . . . , σ

′
0) of that message. If m′

a = b, then σ′
a is the preimage of y

which the adversary returns. Otherwise, the adversary returns failure. More formally,
the adversary is presented in Algorithm 8.1.

Algorithm 8.1 AdvPre

Input: k
$
←− K and y = fk(x), where x

$
←− {0, 1}n

Output: x′ such that y = fk(x) or failure

1. Generate an LD–OTS key pair (X, Y ).

2. Choose a
$
←− {0, . . . , n− 1} and b

$
←− {0, 1}.

3. Replace ya[b] by y in the LD–OTS verification key Y .

4. Run For
O(X,·)(Y ).

5. When For
O(X,·)(Y ) asks its only oracle query with M = (mn−1, . . . , m0):

(a) if ma = (1− b) then sign M and respond to the forger For
O(X,·)(Y ) with the

signature σ.

(b) else return failure.

6. When For
O(X,·)(Y ) outputs a valid signature σ′ = (σ′

n−1, . . . , σ
′
0) for message M ′ =

(m′
0, . . . , m

′
n−1):

(a) if m′
a = b then return σ′

a as preimage of y.

(b) else return failure.

We now compute the success probability of the adversary AdvPre. We denote by ǫ the
forger’s success probability for producing an existential forgery of the LD–OTS and by t
its running time. By tGen and tSig we denote the times the LD–OTS requires for key and
signature generation, respectively.

The adversary AdvPre is successful in finding a preimage of y if and only if For
O(X,·)(Y )

queries the oracle with a message M = (mn−1, . . . , m0) with ma = (1 − b) (Line 5a) or
if he queries the oracle not at all and if the forger returns a valid signature for message
M ′ = (m′

0, . . . , m
′
n−1) with m′

a = b (Line 6a). Since b is selected randomly with the uniform
distribution, the probability for ma = (1− b) is 1/2. Since M ′ must be different from the
queried message M , there exists at least one index c such that m′

c = 1 −mc. AdvPre is
successful if c = a, which happens with probability at least 1/2n. Hence, the adversary’s
success probability for finding a preimage in time tow = t + tSig + tGen, is at least ǫ/4n.
We have proved the following theorem.

Theorem 8.1 Let n ∈ N, let K be a finite parameter set, let tow, ǫow be positive real
numbers, and F =

{

fk : {0, 1}n → {0, 1}n|k ∈ K
}

be a family of (tow, ǫow) one-way
functions. Then the LD–OTS variant that uses F is (tots, ǫots, 1) existentially unforgeable
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under an adaptive chosen message attack with ǫots ≤ 4n · ǫow and tots = tow− tSig− tGen

where tGen and tSig are the key generation and signing times of LD–OTS, respectively.

8.3 Security of the Merkle signature scheme

This section discusses the security of the Merkle signature scheme. We modify the Merkle
scheme slightly. Select a security parameter n ∈ N . Let K = K(n) be a finite set of
parameters. Let

G =
{

gk : {0, 1}∗ → {0, 1}n|k ∈ K
}

be a family of hash functions. The key generation of the modified MSS works as follows.
On input of 1n for a security parameter n a key k ∈ K(n) is selected randomly with the
uniform distribution. Then the Merkle signature scheme is used with the hash function
gk and some one-time signature scheme. The secret and public keys are generated as
described in Section 3. The parameter k is included in the public key. We show that the
existential unforgeability of this MSS variant under an adaptive chosen message attack can
be reduced to the collision resistance of the family G and the existential unforgeability of
the underlying one-time signature scheme.

We explain how an existential forger for the Merkle signature scheme can be used
to construct an adversary that is either an existential forger for the underlying one-time
signature scheme or a collision finder for a hash function in G. The input of the adversary is
a one-time signature scheme, a key k ∈ K chosen randomly with the uniform distribution,
and the Merkle tree height H. Input is also a verification key YOTS and a signing oracle
OOTS(XOTS, ·), where (XOTS, YOTS) is a key pair of the one-time signature scheme.

The adversary is allowed to query the oracle OOTS(XOTS, ·) once. He aims to output a
collision for the hash function gk or an existential forgery (M ′, σ′) for the one-time signature
scheme that can be verified using the verification key YOTS. He has access to an adaptive
chosen message forger For

O(sk,·)(pk) for the MSS with hash function gk and tree height H.
The forger is allowed to ask 2H queries to its signature oracle. The adversary is supposed
to impersonate that oracle.

The adversary selects randomly with the uniform distribution an index c in the set
{0, . . . , 2H−1}. He generates a Merkle key pair in the usual manner with the only exception
that as the cth one-time verification key the one-time verification key YOTS from the input
is used. Then the adversary invokes the adaptive chosen message forger for the Merkle
scheme with the hash function gk and the public Merkle key which he generated before.
Without loss of generality, we assume that the forger queries the oracle 2H times. The
oracle answers are given by the adversary. When the forger asks for the ith signature, i 6= c,
then the adversary produces this signatures using the signature keys which he generated
before. However, when the forger asks for the cth signature, the adversary queries the oracle
OOTS(XOTS, ·). Suppose that the forger is successful and outputs an existential forgery
(M ′, (s, σ′, Y ′, A′)) where s is the index of the one-time key pair used for this signature,
σ′ is the one-time signature, Y ′ is the verification key and A′ is the authentication path.
The adversary examines the Merkle signature (s, σ, Y, A) of M he returned in response to
the forgers sth oracle query.

If s = c and (Y, A) = (Y ′, A′), then the adversary returns (M ′, σ′). We show that this
is an existential forgery of the one-time signature scheme with verification key YOTS. Since
s = c we have Y = Y ′ = YOTS. So the verification key in the message returned by the
forger is the same as the verification key returned by the oracle when it is queried for the
cth time. The same is true for the authentication path. This implies that the message M
in the cth oracle query is different from M ′. So (M ′, σ′) is an existential forgery.
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If (Y, A) 6= (Y ′, A′), then the adversary can construct a collision for the hash function
gk as follows. Consider the path B = (B0 = gk(Y ), B1, . . . , BH) from Y in the Merkle
tree to its root constructed using the hash function gk and the authentication path A =
(A0, . . . , AH−1). Compare it to the path B′ = (B′

0 = gk(Y
′), B′

1, . . . , B
′
H) from Y ′ in the

Merkle tree to its root constructed using the authentication path A′ = (A′
0, . . . , A

′
H−1).

First assume that B and B′ are different. For example, this is true when Y 6= Y ′. Since
BH = B′

H is the MSS public key, there is an index 0 ≤ i < H with Bi+1 = B′
i+1

and Bi 6= B′
i. Since Bi+1 is the hash value of the concatenation of Bi and Ai (in the

appropriate order), and since B′
i+1 is the hash value of the concatenation of B′

i and A′
i (in

the appropriate order), a collision of gk is found. Next, assume that B and B′ are equal.
Therefore gk(Y ) = B0 = B′

0 = gk(Y
′) holds. If Y 6= Y ′ a collision is found. If Y = Y ′ then

A and A′ are different. Assume that Ai 6= A′
i for some index i < H. Since Bi+1 is the hash

value of the concatenation of Bi and Ai (in the appropriate order), and since B′
i+1 is the

hash value of the concatenation of B′
i and A′

i (in the appropriate order) again a collision is
found. That collision is returned by the adversary. In all other cases the adversary returns
failure. Algorithm 8.2 summarizes our description.

Algorithm 8.2 AdvCR,OTS

Input: Key for the hash function k
$
←− K, height of the tree H ≥ 2, one instance of the

underlying OTS consisting of a verification key YOTS and the corresponding signing oracle
OOTS(XOTS, ·).
Output: A collision of gk, an existential forgery for the supplied instance of the OTS, or
failure

1. Set c
$
←− {0, . . . , 2H − 1}.

2. Generate OTS key pairs (Xj , Yj), j = 0, . . . , 2H − 1, j 6= c and set Yc ← YOTS.

3. Complete the Merkle key pair generation and obtain (sk, pk).

4. Run For
O(sk,·)(pk).

5. When For
O(sk,·)(pk) asks its qth oracle query (0≤q≤2H−1):

(a) if q = c then query the signing oracle OOTS(XOTS, ·).

(b) else compute the one-time signature σ using the qth signature key Xq.

(c) Return the corresponding Merkle signature to the forger.

6. If the forger outputs an existential forgery (M ′, (s, σ′, Y ′, A′)), examine the Merkle
signature (s, σ, Y, A) returned in response to the forgers sth oracle query.

(a) if (Y ′, A′) 6= (Y, A) then return a collision of gk.

(b) else

i. if s = c then return (M ′, σ′) as forgery for the supplied instance of the
one-time signature scheme.

ii. else return failure.

We now estimate the success probability of the adversary AdvCR,OTS. In the following,
ǫ denotes the success probability and t the running time of the forger. Also, tGen, tSig,
and tVer denote the times MSS requires for key generation, signature generation, and
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verification, respectively.
If (Y ′, A′) 6= (Y, A), then the adversary returns collision. His (conditional) probability

ǫcr for returning a collision in time tcr = t + 2H · tSig + tVer + tGen is at least ǫ. If
(Y ′, A′) = (Y, A) the adversary returns an existential forgery if s = c. His (conditional)
probability ǫots for finding an existential forgery in time tots = t + 2H · tSig + tVer + tGen

is at least ǫ · 1/2H . Since both cases are mutually exclusive, one of them occurs with
probability at least 1/2. So we have proved the following theorem.

Theorem 8.2 Let K be a finite set, let H ∈ N, tcr, tots, ǫcr, ǫots ∈ R>0, ǫcr ≤ 1/2,
ǫots ≤ 1/2H+1, and let G =

{

gk : {0, 1}∗ → {0, 1}n|k ∈ K
}

be a family of (tcr, ǫcr)
collision resistant hash functions. Consider MSS using a (tots, ǫots, 1) signature scheme.
Then MSS is a (t, ǫ, 2H) signature scheme with

ǫ ≤ 2 ·max
{

ǫcr, 2H · ǫots

}

(76)

t = min
{

tcr, tots

}

− 2H · tSig − tVer − tGen. (77)

This theorem tell us that if there is no adversary that breaks the collision resistance of
the family G in time at most tcr with probability greater than ǫcr and there is no adversary
that is able to produce an existential forgery for the one-time signature scheme used in
MSS in time at most tots with probability greater than ǫots, then there exists no forger
for MSS running in time at most min

{

tcr, tots

}

− 2H · tSig − tVer − tGen and success
probability greater then 2 ·max

{

ǫcr, 2H · ǫots

}

.

8.4 The security level of MSS

The goal of this section is to estimate the security level of the Merkle signature scheme
when used with the Lamport–Diffie one-time signature scheme for a given output length
n of the hash function. Let b ∈ N. We say that MSS has security level 2b if the expected
number of hash function evaluations required for the generation of an existential forgery
is at least 2b. This security level can be computed as t/ǫ where t is the running time of an
existential forger and ǫ is its success probability. We also say that the signature scheme
has b bits of security or that the bit security is b. In this section let ǫcr, tcr, ǫow, tow ∈ R>0,
let K be a finite set, and let

G =
{

gk : {0, 1}∗ → {0, 1}n|k ∈ K
}

(78)

be a family of (tcr, ǫcr) collision resistant and (tow, ǫow) preimage resistant hash functions.
Since we consider MSS using LD-OTS, we first combine Theorems 8.1 and 8.2. This is

achieved by substituting the values for ǫots and tots from Theorem 8.1 in Equations (76)
and (77) from Theorem 8.2. This yields

ǫ ≤ 2 ·max
{

ǫcr, 2H · 4n · ǫow

}

(79)

t = min
{

tcr, tow

}

− 2H · tSig − tVer − tGen. (80)

Note that we can replace tots by tow rather than tow − tSig − tGen, since the time LD-
OTS requires for signature and key generation is already included in the signature and
key generation time of the MSS in Theorem 8.2. We also require ǫcr ≤ 1/2 and ǫow ≤
1/(2H+1 · 4n) to ensure ǫ ≤ 1.

To estimate the security level, we need explicit values for the key pair generation,
signature generation and verification times of MSS using LD-OTS. We will use the following
upper bounds.

tGen ≤ 2H · 6n, tSig ≤ 4n(H + 1), tVer ≤ n + H
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We also make assumptions for the values of (tcr, ǫcr) and (tow, ǫow). We distinguish
between attacks that use classic computers only and attacks with quantum computers.

Using classical computers

In our security analysis of MSS we assume that the hash functions under consideration
have output length n and only admit generic attacks against their preimage and collision
resistance. Those generic attacks are exhaustive search and the birthday attack. When
classical computers are used, then a birthday attack that inspects 2n/2 hash values has
a success probability of approximately 1/2. Also, an exhaustive search of 2n/2 random
strings yields a preimage of a given hash value with probability 1/2n/2. Therefore, we
assume that the hash function family G is (2n/2, 1/2) collision resistant and (2n/2, 1/2n/2)
preimage resistant. In this situation, we prove the following theorem.

Theorem 8.3 (Classic case) The security level of the Merkle signature scheme combined
with the Lamport-Diffie one-time signature scheme is at least

b = n/2− 1 (81)

if the height of the Merkle tree is at most H ≤ n/3 and the output length of the hash
function is at least n ≥ 87.

To prove Theorem 8.3 we use our assumption and Equations (79) and (80) and obtain
the following estimate for the security level.

t

ǫ
≥

2n/2 − 2H · tSig − tVer − tGen

2 ·max{1/2, 2H · 4n · 1/2n/2}
. (82)

Using H ≤ n/3, the maximum in the denominator is 1/2 as long as

n/3 ≤ n/2− log2 4n− 1 (83)

which holds for n ≥ 53. Using the upper bounds for tSig, tVer, and tGen estimated above,
Equation (82) implies

t

ǫ
≥ 2n/2 − 2H · 4n(H + 1)− (n + H)− 2H · 6n. (84)

Using H ≤ n/3, the desired lower bound for the security level of 2n/2−1 holds as long as

2n/3(4/3 · n2 + 4n) + 4/3 · n + 2n/3 · 6n ≤ 2n/2−1 (85)

which is true for n ≥ 87.

Using quantum computers

Again, we assume that our hash functions only admit generic attacks against their col-
lision and preimage resistance. However, when quantum computers are available, the
Grover algorithm [13] can be used in those generic attacks. Grovers algorithm requires
2n/3 evaluations of the hash function to find a collision with probability at most 1/2. So
we assume that our hash functions are (2n/3, 1/2) collision resistant. Also, we may by
virtue of Grover’s algorithm assume that our hash functions are (2n/3, 1/2n/3) preimage
resistant. In this situation, we prove the following theorem.
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Theorem 8.4 (Quantum case) The security level of the Merkle signature scheme com-
bined with the Lamport-Diffie one-time signature scheme is at least

b = n/3− 1 (86)

if the height of the Merkle tree is at most H ≤ n/4 and the output length of the hash
function is at least n ≥ 196.

To prove Theorem 8.4 we use the same approach as for the proof of Theorem 8.3.
We use our assumption on the hash function and Equations (79) and (80) and obtain the
following estimate for the security level.

t

ǫ
≥

2n/3 − 2H · tSig − tVer − tGen

2 ·max{1/2, 2H · 4n · 1/2n/3}
. (87)

Using H ≤ n/4, the maximum in the denominator is 1/2 as long as

n/4 ≤ n/3− log2 4n− 1 (88)

which holds for n ≥ 119. Using the upper bounds for tSig, tVer, and tGen estimated above,
Equation (87) implies

t

ǫ
≥ 2n/3 − 2H · 4n(H + 1)− (n + H)− 2H · 6n. (89)

Using H ≤ n/4, the desired lower bound for the security level of 2n/3−1 holds as long as

2n/4(n2 + 4n) + 5/4 · n + 2n/4 · 6n ≤ 2n/3−1 (90)

which is true for n ≥ 196.

Comparison of the bit security

Table 2 shows the security level for some output lenghts n of the hash function. This table
also shows the maximum value for H such that the security level holds.

Table 2: Security level of the Merkle signature scheme combined with the Lamport–Diffie
one-time signature scheme in bits.

Output length n 128 160 224 256 384 512

Classic case
bit security b 63 79 111 127 191 255
Maximum value for H 42 53 74 85 128 170

Quantum case
bit security b − − 73 84 127 169
Maximum value for H − − 56 64 96 128

This table shows, that state-of-the-art hash functions can be used to ensure a high
security level of the Merkle signature scheme, even against attacks by quantum computers.
For all practical applications the maximum height of the Merkle tree and the resulting
number of messages that can be signed with one key pair is sufficiently large.
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