1
0
mirror of https://github.com/biergaizi/codecrypt synced 2024-06-20 13:58:17 +00:00
codecrypt/src/serialization.cpp
2016-04-28 13:14:24 +02:00

647 lines
15 KiB
C++

/*
* This file is part of Codecrypt.
*
* Copyright (C) 2013-2016 Mirek Kratochvil <exa.exa@gmail.com>
*
* Codecrypt is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or (at
* your option) any later version.
*
* Codecrypt is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Codecrypt. If not, see <http://www.gnu.org/licenses/>.
*/
#include "sencode.h"
#include "types.h"
#include "bvector.h"
#include "matrix.h"
#include "gf2m.h"
#include "polynomial.h"
#include "permutation.h"
#include "mce_qcmdpc.h"
#include "fmtseq.h"
#include "message.h"
#include "hashfile.h"
#include "symkey.h"
#define CAST(IN,OUT,TYPE) \
OUT=dynamic_cast<TYPE>(IN); \
if(!OUT) return false;
#define CAST_LIST(IN,OUT) CAST(IN,OUT,sencode_list*)
#define CAST_BYTES(IN,OUT) CAST(IN,OUT,sencode_bytes*)
#define CAST_INT(IN,OUT) CAST(IN,OUT,sencode_int*)
static sencode* serialize_uint_vector (std::vector<uint>*v)
{
sencode_list*l = new sencode_list;
l->items.resize (v->size());
for (uint i = 0; i < v->size(); ++i)
l->items[i] = new sencode_int ( (*v) [i]);
return l;
}
static bool unserialize_uint_vector (std::vector<uint>*v, sencode*s)
{
sencode_list* CAST_LIST (s, l);
v->clear();
v->resize (l->items.size());
for (uint i = 0; i < v->size(); ++i) {
sencode_int*CAST_INT (l->items[i], x);
(*v) [i] = x->i;
}
return true;
}
sencode* bvector::serialize()
{
std::string bytes;
//the padding of each vector is zero, we can stuff the bytes right in. Just make it sure here:
fix_padding();
to_string (bytes);
sencode_list*l = new sencode_list;
l->items.push_back (new sencode_int (size()));
l->items.push_back (new sencode_bytes (bytes));
return l;
}
bool bvector::unserialize (sencode* s)
{
uint i;
sencode_list*CAST_LIST (s, l);
if (l->items.size() != 2) return false;
sencode_int*CAST_INT (l->items[0], size);
sencode_bytes*CAST_BYTES (l->items[1], bytes);
if (bytes->b.size() != ( (size->i + 7) / 8)) return false;
/*
* the important part. verify that padding is always zero, because
* sencode serialization must be bijective
*/
for (i = size->i; i < 8 * bytes->b.size(); ++i)
if ( (bytes->b[i / 8] >> (i % 8)) & 1)
return false;
from_string (bytes->b, size->i);
return true;
}
sencode* matrix::serialize()
{
uint bits = width() * height();
uint ss = (bits + 7) / 8;
std::string bytes;
bytes.resize (ss, '\0');
for (uint i = 0; i < bits; ++i)
if (item (i / height(), i % height())) bytes[i / 8] |= 1 << (i % 8);
sencode_list*l = new sencode_list;
l->items.push_back (new sencode_int (width()));
l->items.push_back (new sencode_int (height()));
l->items.push_back (new sencode_bytes (bytes));
return l;
}
bool matrix::unserialize (sencode* s)
{
sencode_list*CAST_LIST (s, l);
if (l->items.size() != 3) return false;
sencode_int*CAST_INT (l->items[0], w);
sencode_int*CAST_INT (l->items[1], h);
sencode_bytes*CAST_BYTES (l->items[2], bytes);
if (bytes->b.size() != ( ( (h->i * w->i) + 7) / 8)) return false;
clear();
resize2 (w->i, h->i, 0);
for (uint i = 0; i < w->i * h->i; ++i)
if ( (bytes->b[i / 8] >> (i % 8)) & 1)
item (i / h->i, i % h->i) = 1;
return true;
}
sencode* permutation::serialize()
{
return serialize_uint_vector (this);
}
bool permutation::unserialize (sencode* s)
{
if (!unserialize_uint_vector (this, s)) return false;
//small sanity check
for (uint i = 0; i < size(); ++i) if (item (i) >= size()) return false;
return true;
}
sencode* gf2m::serialize()
{
return new sencode_int (m);
}
bool gf2m::unserialize (sencode* s)
{
sencode_int*CAST_INT (s, p);
return create (p->i);
}
sencode* polynomial::serialize()
{
return serialize_uint_vector (this);
}
bool polynomial::unserialize (sencode* s)
{
return unserialize_uint_vector (this, s);
}
#define PUBKEY_IDENT "CCR-PUBLIC-KEY-"
#define PRIVKEY_IDENT "CCR-PRIVATE-KEY-"
sencode* mce_qcmdpc::pubkey::serialize()
{
sencode_list*l = new sencode_list;
l->items.resize (3);
l->items[0] = new sencode_bytes (PUBKEY_IDENT "QCMDPC-MCE");
l->items[1] = new sencode_int (t);
l->items[2] = G.serialize();
return l;
}
bool mce_qcmdpc::pubkey::unserialize (sencode* s)
{
sencode_list*CAST_LIST (s, l);
if (l->items.size() != 3) return false;
sencode_bytes*CAST_BYTES (l->items[0], ident);
if (ident->b.compare (PUBKEY_IDENT "QCMDPC-MCE")) return false;
sencode_int*CAST_INT (l->items[1], p);
t = p->i;
if (!G.unserialize (l->items[2])) return false;
return true;
}
sencode* mce_qcmdpc::privkey::serialize()
{
sencode_list*l = new sencode_list;
l->items.resize (5);
l->items[0] = new sencode_bytes (PRIVKEY_IDENT "QCMDPC-MCE");
l->items[1] = new sencode_int (t);
l->items[2] = new sencode_int (rounds);
l->items[3] = new sencode_int (delta);
l->items[4] = H.serialize();
return l;
}
bool mce_qcmdpc::privkey::unserialize (sencode*s)
{
sencode_list*CAST_LIST (s, l);
if (l->items.size() != 5) return false;
sencode_bytes*CAST_BYTES (l->items[0], ident);
if (ident->b.compare (PRIVKEY_IDENT "QCMDPC-MCE")) return false;
sencode_int*CAST_INT (l->items[1], p);
t = p->i;
CAST_INT (l->items[2], p);
rounds = p->i;
CAST_INT (l->items[3], p);
delta = p->i;
if (!H.unserialize (l->items[4])) return false;
return true;
}
sencode* fmtseq::privkey::tree_stk_item::serialize()
{
sencode_list*l = new sencode_list;
l->items.resize (3);
l->items[0] = new sencode_int (level);
l->items[1] = new sencode_int (pos);
l->items[2] = new sencode_bytes (item);
return l;
}
bool fmtseq::privkey::tree_stk_item::unserialize (sencode*s)
{
sencode_list*CAST_LIST (s, l);
if (l->items.size() != 3) return false;
sencode_int*p;
CAST_INT (l->items[0], p);
level = p->i;
CAST_INT (l->items[1], p);
pos = p->i;
sencode_bytes* CAST_BYTES (l->items[2], a);
item = std::vector<byte> (a->b.begin(), a->b.end());
return true;
}
sencode* fmtseq::privkey::serialize()
{
/*
* fmtseq privkey structure
*
* ( SK h l hs sigs_used
* ( (exist1 exist exist ...)
* (exist2 exist exist ...)
* ...)
* ( (desired1 ...)
* ...)
* ( (stack1 ...)
* (stack2 ...)
* ...)
* ( progress1 progress2 ...)
* )
*/
uint i, j;
sencode_list*L = new sencode_list;
L->items.resize (10);
L->items[0] = new sencode_bytes (PRIVKEY_IDENT "FMTSEQ");
L->items[1] = new sencode_bytes (SK);
L->items[2] = new sencode_int (h);
L->items[3] = new sencode_int (l);
L->items[4] = new sencode_int (hs);
L->items[5] = new sencode_int (sigs_used);
sencode_list *E, *D, *S, *P;
L->items[6] = E = new sencode_list;
L->items[7] = D = new sencode_list;
L->items[8] = S = new sencode_list;
L->items[9] = P = new sencode_list;
E->items.resize (exist.size());
for (i = 0; i < exist.size(); ++i) {
sencode_list *t = new sencode_list;
E->items[i] = t;
t->items.resize (exist[i].size());
for (j = 0; j < exist[i].size(); ++j)
t->items[j] = new sencode_bytes (exist[i][j]);
}
D->items.resize (desired.size());
for (i = 0; i < desired.size(); ++i) {
sencode_list *t = new sencode_list;
D->items[i] = t;
t->items.resize (desired[i].size());
for (j = 0; j < desired[i].size(); ++j)
t->items[j] = new sencode_bytes (desired[i][j]);
}
S->items.resize (desired_stack.size());
for (i = 0; i < desired_stack.size(); ++i) {
sencode_list *t = new sencode_list;
S->items[i] = t;
t->items.resize (desired_stack[i].size());
for (j = 0; j < desired_stack[i].size(); ++j)
t->items[j] = desired_stack[i][j].serialize();
}
P->items.resize (desired_progress.size());
for (i = 0; i < desired_progress.size(); ++i)
P->items[i] = new sencode_int (desired_progress[i]);
return L;
}
bool fmtseq::privkey::unserialize (sencode*s)
{
uint i, j;
sencode_list*CAST_LIST (s, L);
if (L->items.size() != 10) return false;
sencode_bytes*CAST_BYTES (L->items[0], ident);
if (ident->b.compare (PRIVKEY_IDENT "FMTSEQ")) return false;
sencode_bytes*B;
sencode_int*I;
CAST_BYTES (L->items[1], B);
SK = std::vector<byte> (B->b.begin(), B->b.end());
CAST_INT (L->items[2], I);
h = I->i;
CAST_INT (L->items[3], I);
l = I->i;
CAST_INT (L->items[4], I);
hs = I->i;
CAST_INT (L->items[5], I);
sigs_used = I->i;
sencode_list*A;
//exist subtrees
CAST_LIST (L->items[6], A);
exist.clear();
exist.resize (A->items.size());
for (i = 0; i < exist.size(); ++i) {
sencode_list*CAST_LIST (A->items[i], e);
exist[i].resize (e->items.size());
for (j = 0; j < exist[i].size(); ++j) {
sencode_bytes*CAST_BYTES (e->items[j], item);
exist[i][j] = std::vector<byte>
(item->b.begin(),
item->b.end());
}
}
//desired subtrees
CAST_LIST (L->items[7], A);
desired.clear();
desired.resize (A->items.size());
for (i = 0; i < desired.size(); ++i) {
sencode_list*CAST_LIST (A->items[i], d);
desired[i].resize (d->items.size());
for (j = 0; j < desired[i].size(); ++j) {
sencode_bytes*CAST_BYTES (d->items[j], item);
desired[i][j] = std::vector<byte>
(item->b.begin(),
item->b.end());
}
}
//desired stacks
CAST_LIST (L->items[8], A);
desired_stack.clear();
desired_stack.resize (A->items.size());
for (i = 0; i < desired_stack.size(); ++i) {
sencode_list*CAST_LIST (A->items[i], d);
desired_stack[i].resize (d->items.size());
for (j = 0; j < desired_stack[i].size(); ++j)
if (!desired_stack[i][j].unserialize (d->items[j]))
return false;
}
//desired progress
CAST_LIST (L->items[9], A);
desired_progress.clear();
desired_progress.resize (A->items.size());
for (i = 0; i < desired_progress.size(); ++i) {
CAST_INT (A->items[i], I);
desired_progress[i] = I->i;
}
//checking the sizes and correctness of everything is a job of FMTSeq
//implementation that has some insight into how it works :]
return true;
}
sencode* fmtseq::pubkey::serialize()
{
sencode_list*l = new sencode_list;
l->items.resize (4);
l->items[0] = new sencode_bytes (PUBKEY_IDENT "FMTSEQ");
l->items[1] = new sencode_int (H);
l->items[2] = new sencode_int (hs);
l->items[3] = new sencode_bytes (check);
return l;
}
bool fmtseq::pubkey::unserialize (sencode*s)
{
sencode_list*CAST_LIST (s, l);
if (l->items.size() != 4) return false;
sencode_bytes*CAST_BYTES (l->items[0], ident);
if (ident->b.compare (PUBKEY_IDENT "FMTSEQ")) return false;
sencode_int*p;
CAST_INT (l->items[1], p);
H = p->i;
CAST_INT (l->items[2], p);
hs = p->i;
sencode_bytes* CAST_BYTES (l->items[3], a);
check = std::vector<byte> (a->b.begin(), a->b.end());
return true;
}
#define ENC_MSG_IDENT "CCR-ENCRYPTED-MSG-v2"
#define SIG_MSG_IDENT "CCR-SIGNED-MSG-v2"
sencode* encrypted_msg::serialize()
{
sencode_list*L = new sencode_list();
L->items.resize (4);
L->items[0] = new sencode_bytes (ENC_MSG_IDENT);
L->items[1] = new sencode_bytes (alg_id);
L->items[2] = new sencode_bytes (key_id);
L->items[3] = ciphertext.serialize();
return L;
}
bool encrypted_msg::unserialize (sencode*s)
{
sencode_list*CAST_LIST (s, L);
if (L->items.size() != 4) return false;
sencode_bytes*B;
CAST_BYTES (L->items[0], B);
if (B->b != ENC_MSG_IDENT) return false;
CAST_BYTES (L->items[1], B);
alg_id = B->b;
CAST_BYTES (L->items[2], B);
key_id = B->b;
return ciphertext.unserialize (L->items[3]);
}
sencode* signed_msg::serialize()
{
sencode_list*L = new sencode_list();
L->items.resize (5);
L->items[0] = new sencode_bytes (SIG_MSG_IDENT);
L->items[1] = new sencode_bytes (alg_id);
L->items[2] = new sencode_bytes (key_id);
L->items[3] = message.serialize();
L->items[4] = signature.serialize();
return L;
}
bool signed_msg::unserialize (sencode*s)
{
sencode_list*CAST_LIST (s, L);
if (L->items.size() != 5) return false;
sencode_bytes*B;
CAST_BYTES (L->items[0], B);
if (B->b != SIG_MSG_IDENT) return false;
CAST_BYTES (L->items[1], B);
alg_id = B->b;
CAST_BYTES (L->items[2], B);
key_id = B->b;
return message.unserialize (L->items[3]) &&
signature.unserialize (L->items[4]);
}
/*
* hashfiles are stored as
*
* ( CCR-HASHFILE
* ( HASH1NAME HASH1DATA )
* ( HASH2NAME HASH2DATA )
* ...
* )
*/
#define HASHFILE_IDENT "CCR-HASHFILE"
sencode* hashfile::serialize()
{
sencode_list*L = new sencode_list();
L->items.resize (1 + hashes.size());
L->items[0] = new sencode_bytes (HASHFILE_IDENT);
uint pos = 1;
for (hashes_t::iterator i = hashes.begin(), e = hashes.end(); i != e; ++i, ++pos) {
sencode_list*hash = new sencode_list();
hash->items.resize (2);
hash->items[0] = new sencode_bytes (i->first);
hash->items[1] = new sencode_bytes (i->second);
L->items[pos] = hash;
}
return L;
}
bool hashfile::unserialize (sencode*s)
{
sencode_list*CAST_LIST (s, L);
if (L->items.size() < 1) return false;
sencode_bytes*ID;
CAST_BYTES (L->items[0], ID);
if (ID->b != HASHFILE_IDENT) return false;
for (uint pos = 1; pos < L->items.size(); ++pos) {
sencode_list*CAST_LIST (L->items[pos], hash);
if (hash->items.size() != 2) return false;
sencode_bytes*CAST_BYTES (hash->items[0], name);
sencode_bytes*CAST_BYTES (hash->items[1], value);
//prevent multiple hash entries of same hash
if (hashes.count (name->b)) return false;
hashes[name->b] = std::vector<byte> (value->b.begin(), value->b.end());
}
return true;
}
/*
* Symmetric key structure:
*
* ( CCR-SYMKEY
* ( streamcipher1 streamcipher2 )
* ( hash1 hash2 hash3 )
* int_blocksize
* key_data
* )
*/
#define SYMKEY_IDENT "CCR-SYMKEY"
sencode* symkey::serialize()
{
int k;
sencode_list*L = new sencode_list(), *LL;
L->items.resize (5);
L->items[0] = new sencode_bytes (SYMKEY_IDENT);
L->items[3] = new sencode_int (blocksize);
L->items[4] = new sencode_bytes (key);
std::set<std::string>::iterator i, e;
LL = new sencode_list();
LL->items.resize (ciphers.size());
k = 0;
for (i = ciphers.begin(), e = ciphers.end();
i != e; ++i)
LL->items[k++] = new sencode_bytes (*i);
L->items[1] = LL;
LL = new sencode_list();
LL->items.resize (hashes.size());
k = 0;
for (i = hashes.begin(), e = hashes.end();
i != e; ++i)
LL->items[k++] = new sencode_bytes (*i);
L->items[2] = LL;
return L;
}
bool symkey::unserialize (sencode*s)
{
sencode_list*CAST_LIST (s, L);
if (L->items.size() != 5) return false;
sencode_bytes*ID;
CAST_BYTES (L->items[0], ID);
if (ID->b != SYMKEY_IDENT) return false;
sencode_int*CAST_INT (L->items[3], bs);
blocksize = bs->i;
sencode_bytes*B;
CAST_BYTES (L->items[4], B);
key.clear();
key.insert (key.begin(), B->b.begin(), B->b.end());
sencode_list*LL;
uint i;
CAST_LIST (L->items[1], LL);
ciphers.clear();
for (i = 0; i < LL->items.size(); ++i) {
CAST_BYTES (LL->items[i], B);
if (ciphers.count (B->b)) return false;
ciphers.insert (B->b);
}
CAST_LIST (L->items[2], LL);
hashes.clear();
for (i = 0; i < LL->items.size(); ++i) {
CAST_BYTES (LL->items[i], B);
if (hashes.count (B->b)) return false;
hashes.insert (B->b);
}
return true;
}