Add S110 version 8.0.0 SoftDevice for nrf51822

The nrf51822 chip is still widely available, for example in the BBC
micro:bit. Therefore it's a good idea to support it too.

Unfortunately, Nordic decided to change the API in some significant ways
so many parts are not compatible between S110 for nrf51 and the other
nrf52* SoftDevices.
This commit is contained in:
Ayke van Laethem 2020-05-24 21:23:34 +02:00
parent c26709f8c6
commit f91f73ede2
No known key found for this signature in database
GPG Key ID: E97FF5335DFDFDED
29 changed files with 11632 additions and 150 deletions

View File

@ -14,6 +14,8 @@ smoketest-tinygo:
# Test some more boards that are not tested above.
$(TINYGO) build -o test.hex -size=short -target=pca10056-s140v7 ./examples/advertisement
@md5sum test.hex
$(TINYGO) build -o test.hex -size=short -target=microbit-s110v8 ./examples/advertisement
@md5sum test.hex
smoketest-linux:
# Test on Linux.

View File

@ -18,6 +18,7 @@ As you can see above, there is support for some chips from Nordic Semiconductors
* The [nRF52832](https://www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF52832) with the [S132](https://www.nordicsemi.com/Software-and-Tools/Software/S132) SoftDevice (version 6).
* The [nRF52840](https://www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF52840) with the [S140](https://www.nordicsemi.com/Software-and-Tools/Software/S140) SoftDevice (version 7).
* The [nRF51822](https://www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF51822) with the [S110](https://www.nordicsemi.com/Software-and-Tools/Software/S110) SoftDevice (version 8). This SoftDevice does not support all features (e.g. scanning).
These chips are supported through [TinyGo](https://tinygo.org/).
@ -36,6 +37,14 @@ After that, don't reset the board but instead flash a new program to it. For exa
Flashing will normally reset the board.
For boards that use the CMSIS-DAP interface (such as the [BBC micro:bit](https://microbit.org/)), this works a bit different. Flashing the SoftDevice is done by simply copying the .hex file to the device, for example (on Linux):
cp path/to/softdevice.hex /media/yourusername/MICROBIT/
Flashing will then need to be done a bit differently, using the CMSIS-DAP interface instead of the mass-storage interface normally used by TinyGo:
tinygo flash -target=microbit-s110v8 -programmer=cmsis-dap ./examples/heartrate
## License
This project is licensed under the BSD 3-clause license, see the LICENSE file for details.

103
adapter_nrf51.go Normal file
View File

@ -0,0 +1,103 @@
// +build softdevice,s110v8
package bluetooth
/*
// Define SoftDevice functions as regular function declarations (not inline
// static functions).
#define SVCALL_AS_NORMAL_FUNCTION
#include "nrf_sdm.h"
#include "ble.h"
#include "ble_gap.h"
void assertHandler(void);
*/
import "C"
import "unsafe"
//export assertHandler
func assertHandler(pc uint32, line_number uint16, p_file_name *byte) {
println("SoftDevice assert")
}
func (a *Adapter) enable() error {
// Enable the SoftDevice.
errCode := C.sd_softdevice_enable(C.NRF_CLOCK_LFCLKSRC_RC_250_PPM_250MS_CALIBRATION, C.softdevice_assertion_handler_t(C.assertHandler))
if errCode != 0 {
return Error(errCode)
}
// Enable the BLE stack.
enableParams := C.ble_enable_params_t{
gatts_enable_params: C.ble_gatts_enable_params_t{
attr_tab_size: C.BLE_GATTS_ATTR_TAB_SIZE_DEFAULT,
},
}
errCode = C.sd_ble_enable(&enableParams)
return makeError(errCode)
}
func handleEvent() {
id := eventBuf.header.evt_id
switch {
case id >= C.BLE_GAP_EVT_BASE && id <= C.BLE_GAP_EVT_LAST:
gapEvent := eventBuf.evt.unionfield_gap_evt()
switch id {
case C.BLE_GAP_EVT_CONNECTED:
handler := defaultAdapter.handler
if handler != nil {
handler(&ConnectEvent{GAPEvent: GAPEvent{Connection(gapEvent.conn_handle)}})
}
case C.BLE_GAP_EVT_DISCONNECTED:
handler := defaultAdapter.handler
if handler != nil {
handler(&DisconnectEvent{GAPEvent: GAPEvent{Connection(gapEvent.conn_handle)}})
}
case C.BLE_GAP_EVT_CONN_PARAM_UPDATE_REQUEST:
// Respond with the default PPCP connection parameters by passing
// nil:
// > If NULL is provided on a peripheral role, the parameters in the
// > PPCP characteristic of the GAP service will be used instead. If
// > NULL is provided on a central role and in response to a
// > BLE_GAP_EVT_CONN_PARAM_UPDATE_REQUEST, the peripheral request
// > will be rejected
C.sd_ble_gap_conn_param_update(gapEvent.conn_handle, nil)
default:
if debug {
println("unknown GAP event:", id)
}
}
case id >= C.BLE_GATTS_EVT_BASE && id <= C.BLE_GATTS_EVT_LAST:
gattsEvent := eventBuf.evt.unionfield_gatts_evt()
switch id {
case C.BLE_GATTS_EVT_WRITE:
writeEvent := gattsEvent.params.unionfield_write()
len := writeEvent.len - writeEvent.offset
data := (*[255]byte)(unsafe.Pointer(&writeEvent.data[0]))[:len:len]
handler := defaultAdapter.getCharWriteHandler(writeEvent.handle)
if handler != nil {
handler.callback(Connection(gattsEvent.conn_handle), int(writeEvent.offset), data)
}
case C.BLE_GATTS_EVT_SYS_ATTR_MISSING:
// This event is generated when reading the Generic Attribute
// service. It appears to be necessary for bonded devices.
// From the docs:
// > If the pointer is NULL, the system attribute info is
// > initialized, assuming that the application does not have any
// > previously saved system attribute data for this device.
// Maybe we should look at the error, but as there's not really a
// way to handle it, ignore it.
C.sd_ble_gatts_sys_attr_set(gattsEvent.conn_handle, nil, 0, 0)
default:
if debug {
println("unknown GATTS event:", id, id-C.BLE_GATTS_EVT_BASE)
}
}
default:
if debug {
println("unknown event:", id)
}
}
}

130
adapter_nrf528xx.go Normal file
View File

@ -0,0 +1,130 @@
// +build softdevice,!s110v8
package bluetooth
/*
// Define SoftDevice functions as regular function declarations (not inline
// static functions).
#define SVCALL_AS_NORMAL_FUNCTION
#include "nrf_sdm.h"
#include "ble.h"
#include "ble_gap.h"
void assertHandler(void);
*/
import "C"
import "unsafe"
//export assertHandler
func assertHandler() {
println("SoftDevice assert")
}
var clockConfig C.nrf_clock_lf_cfg_t = C.nrf_clock_lf_cfg_t{
source: C.NRF_CLOCK_LF_SRC_SYNTH,
rc_ctiv: 0,
rc_temp_ctiv: 0,
accuracy: 0,
}
func (a *Adapter) enable() error {
// Enable the SoftDevice.
errCode := C.sd_softdevice_enable(&clockConfig, C.nrf_fault_handler_t(C.assertHandler))
if errCode != 0 {
return Error(errCode)
}
// Enable the BLE stack.
appRAMBase := uint32(0x200039c0)
errCode = C.sd_ble_enable(&appRAMBase)
return makeError(errCode)
}
func handleEvent() {
id := eventBuf.header.evt_id
switch {
case id >= C.BLE_GAP_EVT_BASE && id <= C.BLE_GAP_EVT_LAST:
gapEvent := eventBuf.evt.unionfield_gap_evt()
switch id {
case C.BLE_GAP_EVT_CONNECTED:
handler := defaultAdapter.handler
if handler != nil {
handler(&ConnectEvent{GAPEvent: GAPEvent{Connection(gapEvent.conn_handle)}})
}
case C.BLE_GAP_EVT_DISCONNECTED:
handler := defaultAdapter.handler
if handler != nil {
handler(&DisconnectEvent{GAPEvent: GAPEvent{Connection(gapEvent.conn_handle)}})
}
case C.BLE_GAP_EVT_ADV_REPORT:
advReport := gapEvent.params.unionfield_adv_report()
if debug && &scanReportBuffer.data[0] != advReport.data.p_data {
// Sanity check.
panic("scanReportBuffer != advReport.p_data")
}
// Prepare the globalScanResult, which will be passed to the
// callback.
scanReportBuffer.len = byte(advReport.data.len)
globalScanResult.RSSI = int16(advReport.rssi)
globalScanResult.Address = advReport.peer_addr.addr
globalScanResult.AdvertisementPayload = &scanReportBuffer
// Signal to the main thread that there was a scan report.
// Scanning will be resumed (from the main thread) once the scan
// report has been processed.
gotScanReport.Set(1)
case C.BLE_GAP_EVT_CONN_PARAM_UPDATE_REQUEST:
// Respond with the default PPCP connection parameters by passing
// nil:
// > If NULL is provided on a peripheral role, the parameters in the
// > PPCP characteristic of the GAP service will be used instead. If
// > NULL is provided on a central role and in response to a
// > BLE_GAP_EVT_CONN_PARAM_UPDATE_REQUEST, the peripheral request
// > will be rejected
C.sd_ble_gap_conn_param_update(gapEvent.conn_handle, nil)
case C.BLE_GAP_EVT_DATA_LENGTH_UPDATE_REQUEST:
// We need to respond with sd_ble_gap_data_length_update. Setting
// both parameters to nil will make sure we send the default values.
C.sd_ble_gap_data_length_update(gapEvent.conn_handle, nil, nil)
default:
if debug {
println("unknown GAP event:", id)
}
}
case id >= C.BLE_GATTS_EVT_BASE && id <= C.BLE_GATTS_EVT_LAST:
gattsEvent := eventBuf.evt.unionfield_gatts_evt()
switch id {
case C.BLE_GATTS_EVT_WRITE:
writeEvent := gattsEvent.params.unionfield_write()
len := writeEvent.len - writeEvent.offset
data := (*[255]byte)(unsafe.Pointer(&writeEvent.data[0]))[:len:len]
handler := defaultAdapter.getCharWriteHandler(writeEvent.handle)
if handler != nil {
handler.callback(Connection(gattsEvent.conn_handle), int(writeEvent.offset), data)
}
case C.BLE_GATTS_EVT_SYS_ATTR_MISSING:
// This event is generated when reading the Generic Attribute
// service. It appears to be necessary for bonded devices.
// From the docs:
// > If the pointer is NULL, the system attribute info is
// > initialized, assuming that the application does not have any
// > previously saved system attribute data for this device.
// Maybe we should look at the error, but as there's not really a
// way to handle it, ignore it.
C.sd_ble_gatts_sys_attr_set(gattsEvent.conn_handle, nil, 0, 0)
case C.BLE_GATTS_EVT_EXCHANGE_MTU_REQUEST:
// This event is generated by some devices. While we could support
// larger MTUs, this default MTU is supported everywhere.
C.sd_ble_gatts_exchange_mtu_reply(gattsEvent.conn_handle, C.BLE_GATT_ATT_MTU_DEFAULT)
default:
if debug {
println("unknown GATTS event:", id, id-C.BLE_GATTS_EVT_BASE)
}
}
default:
if debug {
println("unknown event:", id)
}
}
}

10
adapter_s110.c Normal file
View File

@ -0,0 +1,10 @@
// +build softdevice,s110v8
// This file is necessary to define SVCall wrappers, because TinyGo does not yet
// support static functions in the preamble.
// Discard all 'static' attributes to define functions normally.
#define static
#include "s110_nrf51_8.0.0/s110_nrf51_8.0.0_API/include/nrf_sdm.h"
#include "s110_nrf51_8.0.0/s110_nrf51_8.0.0_API/include/ble.h"

10
adapter_s110.go Normal file
View File

@ -0,0 +1,10 @@
// +build softdevice,s110v8
package bluetooth
/*
// Add the correct SoftDevice include path to CFLAGS, so #include will work as
// expected.
#cgo CFLAGS: -Is110_nrf51_8.0.0/s110_nrf51_8.0.0_API/include
*/
import "C"

View File

@ -2,23 +2,10 @@
package bluetooth
/*
// Define SoftDevice functions as regular function declarations (not inline
// static functions).
#define SVCALL_AS_NORMAL_FUNCTION
#include "nrf_sdm.h"
#include "ble.h"
#include "ble_gap.h"
void assertHandler(void);
*/
import "C"
import (
"device/arm"
"device/nrf"
"errors"
"runtime/interrupt"
"unsafe"
)
@ -26,18 +13,6 @@ var (
ErrNotDefaultAdapter = errors.New("bluetooth: not the default adapter")
)
//export assertHandler
func assertHandler() {
println("SoftDevice assert")
}
var clockConfig C.nrf_clock_lf_cfg_t = C.nrf_clock_lf_cfg_t{
source: C.NRF_CLOCK_LF_SRC_SYNTH,
rc_ctiv: 0,
rc_temp_ctiv: 0,
accuracy: 0,
}
var (
secModeOpen C.ble_gap_conn_sec_mode_t // No security is needed (aka open link).
defaultDeviceName = [6]byte{'T', 'i', 'n', 'y', 'G', 'o'}
@ -81,21 +56,34 @@ func (a *Adapter) Enable() error {
}
// Enable the IRQ that handles all events.
arm.EnableIRQ(nrf.IRQ_SWI2)
arm.SetPriority(nrf.IRQ_SWI2, 192)
intr := interrupt.New(nrf.IRQ_SWI2, func(interrupt.Interrupt) {
for {
eventBufLen := uint16(unsafe.Sizeof(eventBuf))
errCode := C.sd_ble_evt_get((*uint8)(unsafe.Pointer(&eventBuf)), &eventBufLen)
if errCode != 0 {
// Possible error conditions:
// * NRF_ERROR_NOT_FOUND: no events left, break
// * NRF_ERROR_DATA_SIZE: retry with a bigger data buffer
// (currently not handled, TODO)
// * NRF_ERROR_INVALID_ADDR: pointer is not aligned, should
// not happen.
// In all cases, it's best to simply stop now.
break
}
handleEvent()
}
})
intr.Enable()
intr.SetPriority(192)
errCode := C.sd_softdevice_enable(&clockConfig, C.nrf_fault_handler_t(C.assertHandler))
if errCode != 0 {
return Error(errCode)
// Do more specific initialization of this SoftDevice (split out for nrf52*
// and nrf51 chips because of the different API).
err := a.enable()
if err != nil {
return err
}
appRAMBase := uint32(0x200039c0)
errCode = C.sd_ble_enable(&appRAMBase)
if errCode != 0 {
return Error(errCode)
}
errCode = C.sd_ble_gap_device_name_set(&secModeOpen, &defaultDeviceName[0], uint16(len(defaultDeviceName)))
errCode := C.sd_ble_gap_device_name_set(&secModeOpen, &defaultDeviceName[0], uint16(len(defaultDeviceName)))
if errCode != 0 {
return Error(errCode)
}
@ -107,115 +95,5 @@ func (a *Adapter) Enable() error {
gapConnParams.conn_sup_timeout = C.BLE_GAP_CP_CONN_SUP_TIMEOUT_NONE
errCode = C.sd_ble_gap_ppcp_set(&gapConnParams)
if errCode != 0 {
return Error(errCode)
}
return nil
}
func handleEvent() {
id := eventBuf.header.evt_id
switch {
case id >= C.BLE_GAP_EVT_BASE && id <= C.BLE_GAP_EVT_LAST:
gapEvent := eventBuf.evt.unionfield_gap_evt()
switch id {
case C.BLE_GAP_EVT_CONNECTED:
handler := defaultAdapter.handler
if handler != nil {
handler(&ConnectEvent{GAPEvent: GAPEvent{Connection(gapEvent.conn_handle)}})
}
case C.BLE_GAP_EVT_DISCONNECTED:
handler := defaultAdapter.handler
if handler != nil {
handler(&DisconnectEvent{GAPEvent: GAPEvent{Connection(gapEvent.conn_handle)}})
}
case C.BLE_GAP_EVT_ADV_REPORT:
advReport := gapEvent.params.unionfield_adv_report()
if debug && &scanReportBuffer.data[0] != advReport.data.p_data {
// Sanity check.
panic("scanReportBuffer != advReport.p_data")
}
// Prepare the globalScanResult, which will be passed to the
// callback.
scanReportBuffer.len = byte(advReport.data.len)
globalScanResult.RSSI = int16(advReport.rssi)
globalScanResult.Address = advReport.peer_addr.addr
globalScanResult.AdvertisementPayload = &scanReportBuffer
// Signal to the main thread that there was a scan report.
// Scanning will be resumed (from the main thread) once the scan
// report has been processed.
gotScanReport.Set(1)
case C.BLE_GAP_EVT_CONN_PARAM_UPDATE_REQUEST:
// Respond with the default PPCP connection parameters by passing
// nil:
// > If NULL is provided on a peripheral role, the parameters in the
// > PPCP characteristic of the GAP service will be used instead. If
// > NULL is provided on a central role and in response to a
// > BLE_GAP_EVT_CONN_PARAM_UPDATE_REQUEST, the peripheral request
// > will be rejected
C.sd_ble_gap_conn_param_update(gapEvent.conn_handle, nil)
case C.BLE_GAP_EVT_DATA_LENGTH_UPDATE_REQUEST:
// We need to respond with sd_ble_gap_data_length_update. Setting
// both parameters to nil will make sure we send the default values.
C.sd_ble_gap_data_length_update(gapEvent.conn_handle, nil, nil)
default:
if debug {
println("unknown GAP event:", id)
}
}
case id >= C.BLE_GATTS_EVT_BASE && id <= C.BLE_GATTS_EVT_LAST:
gattsEvent := eventBuf.evt.unionfield_gatts_evt()
switch id {
case C.BLE_GATTS_EVT_WRITE:
writeEvent := gattsEvent.params.unionfield_write()
len := writeEvent.len - writeEvent.offset
data := (*[255]byte)(unsafe.Pointer(&writeEvent.data[0]))[:len:len]
handler := defaultAdapter.getCharWriteHandler(writeEvent.handle)
if handler != nil {
handler.callback(Connection(gattsEvent.conn_handle), int(writeEvent.offset), data)
}
case C.BLE_GATTS_EVT_SYS_ATTR_MISSING:
// This event is generated when reading the Generic Attribute
// service. It appears to be necessary for bonded devices.
// From the docs:
// > If the pointer is NULL, the system attribute info is
// > initialized, assuming that the application does not have any
// > previously saved system attribute data for this device.
// Maybe we should look at the error, but as there's not really a
// way to handle it, ignore it.
C.sd_ble_gatts_sys_attr_set(gattsEvent.conn_handle, nil, 0, 0)
case C.BLE_GATTS_EVT_EXCHANGE_MTU_REQUEST:
// This event is generated by some devices. While we could support
// larger MTUs, this default MTU is supported everywhere.
C.sd_ble_gatts_exchange_mtu_reply(gattsEvent.conn_handle, C.BLE_GATT_ATT_MTU_DEFAULT)
default:
if debug {
println("unknown GATTS event:", id, id-C.BLE_GATTS_EVT_BASE)
}
}
default:
if debug {
println("unknown event:", id)
}
}
}
//go:export SWI2_EGU2_IRQHandler
func handleInterrupt() {
for {
eventBufLen := uint16(unsafe.Sizeof(eventBuf))
errCode := C.sd_ble_evt_get((*uint8)(unsafe.Pointer(&eventBuf)), &eventBufLen)
if errCode != 0 {
// Possible error conditions:
// * NRF_ERROR_NOT_FOUND: no events left, break
// * NRF_ERROR_DATA_SIZE: retry with a bigger data buffer
// (currently not handled, TODO)
// * NRF_ERROR_INVALID_ADDR: pointer is not aligned, should
// not happen.
// In all cases, it's best to simply stop now.
break
}
handleEvent()
}
return makeError(errCode)
}

61
gap_nrf51.go Normal file
View File

@ -0,0 +1,61 @@
// +build softdevice,s110v8
package bluetooth
/*
// Define SoftDevice functions as regular function declarations (not inline
// static functions).
#define SVCALL_AS_NORMAL_FUNCTION
#include "ble_gap.h"
*/
import "C"
// Advertisement encapsulates a single advertisement instance.
type Advertisement struct {
interval AdvertiseInterval
}
var globalAdvertisement Advertisement
// NewAdvertisement creates a new advertisement instance but does not configure
// it. It can be called before the SoftDevice has been initialized.
//
// On the nrf51 only one advertisement is allowed at a given time, therefore
// this is a singleton.
func (a *Adapter) NewAdvertisement() *Advertisement {
return &globalAdvertisement
}
// Configure this advertisement. Must be called after SoftDevice initialization.
func (a *Advertisement) Configure(broadcastData, scanResponseData []byte, options *AdvertiseOptions) error {
var (
p_data *byte
dlen byte
p_sr_data *byte
srdlen byte
)
if broadcastData != nil {
p_data = &broadcastData[0]
dlen = uint8(len(broadcastData))
}
if scanResponseData != nil {
p_sr_data = &scanResponseData[0]
srdlen = uint8(len(scanResponseData))
}
errCode := C.sd_ble_gap_adv_data_set(p_data, dlen, p_sr_data, srdlen)
a.interval = options.Interval
return makeError(errCode)
}
// Start advertisement. May only be called after it has been configured.
func (a *Advertisement) Start() error {
params := C.ble_gap_adv_params_t{
_type: C.BLE_GAP_ADV_TYPE_ADV_IND,
fp: C.BLE_GAP_ADV_FP_ANY,
interval: uint16(a.interval),
timeout: 0, // no timeout
}
errCode := C.sd_ble_gap_adv_start(&params)
return makeError(errCode)
}

View File

@ -1,4 +1,4 @@
// +build softdevice
// +build softdevice,!s110v8
package bluetooth

View File

@ -0,0 +1,455 @@
/*
* Copyright (c) Nordic Semiconductor ASA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* 4. This software must only be used in a processor manufactured by Nordic
* Semiconductor ASA, or in a processor manufactured by a third party that
* is used in combination with a processor manufactured by Nordic Semiconductor.
*
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/**
@addtogroup BLE_COMMON BLE SoftDevice Common
@{
@defgroup ble_api Events, type definitions and API calls
@{
@brief Module independent events, type definitions and API calls for the BLE SoftDevice.
*/
#ifndef BLE_H__
#define BLE_H__
#include "ble_ranges.h"
#include "ble_types.h"
#include "ble_gap.h"
#include "ble_l2cap.h"
#include "ble_gatt.h"
#include "ble_gattc.h"
#include "ble_gatts.h"
/** @addtogroup BLE_COMMON_ENUMERATIONS Enumerations
* @{ */
/**
* @brief Common API SVC numbers.
*/
enum BLE_COMMON_SVCS
{
SD_BLE_ENABLE = BLE_SVC_BASE, /**< Enable and initialize the BLE stack */
SD_BLE_EVT_GET, /**< Get an event from the pending events queue. */
SD_BLE_TX_BUFFER_COUNT_GET, /**< Get the total number of available application transmission buffers from the BLE stack. */
SD_BLE_UUID_VS_ADD, /**< Add a Vendor Specific UUID. */
SD_BLE_UUID_DECODE, /**< Decode UUID bytes. */
SD_BLE_UUID_ENCODE, /**< Encode UUID bytes. */
SD_BLE_VERSION_GET, /**< Get the local version information (company id, Link Layer Version, Link Layer Subversion). */
SD_BLE_USER_MEM_REPLY, /**< User Memory Reply. */
SD_BLE_OPT_SET, /**< Set a BLE option. */
SD_BLE_OPT_GET, /**< Get a BLE option. */
};
/**
* @brief BLE Module Independent Event IDs.
*/
enum BLE_COMMON_EVTS
{
BLE_EVT_TX_COMPLETE = BLE_EVT_BASE, /**< Transmission Complete. @ref ble_evt_tx_complete_t */
BLE_EVT_USER_MEM_REQUEST, /**< User Memory request. @ref ble_evt_user_mem_request_t */
BLE_EVT_USER_MEM_RELEASE /**< User Memory release. @ref ble_evt_user_mem_release_t */
};
/**@brief Common Option IDs.
* IDs that uniquely identify a common option.
*/
enum BLE_COMMON_OPTS
{
BLE_COMMON_OPT_RADIO_CPU_MUTEX = BLE_OPT_BASE /**< Radio CPU mutex option. @ref ble_common_opt_radio_cpu_mutex_t */
};
/** @} */
/** @addtogroup BLE_COMMON_DEFINES Defines
* @{ */
/** @brief Required pointer alignment for BLE Events.
*/
#define BLE_EVTS_PTR_ALIGNMENT 4
/** @defgroup BLE_USER_MEM_TYPES User Memory Types
* @{ */
#define BLE_USER_MEM_TYPE_INVALID 0x00 /**< Invalid User Memory Types. */
#define BLE_USER_MEM_TYPE_GATTS_QUEUED_WRITES 0x01 /**< User Memory for GATTS queued writes. */
/** @} */
/** @brief Maximum number of Vendor Specific UUIDs.
*/
#define BLE_UUID_VS_MAX_COUNT 10
/** @} */
/** @addtogroup BLE_COMMON_STRUCTURES Structures
* @{ */
/**@brief User Memory Block. */
typedef struct
{
uint8_t *p_mem; /**< Pointer to the start of the user memory block. */
uint16_t len; /**< Length in bytes of the user memory block. */
} ble_user_mem_block_t;
/**
* @brief Event structure for @ref BLE_EVT_TX_COMPLETE.
*/
typedef struct
{
uint8_t count; /**< Number of packets transmitted. */
} ble_evt_tx_complete_t;
/**@brief Event structure for @ref BLE_EVT_USER_MEM_REQUEST. */
typedef struct
{
uint8_t type; /**< User memory type, see @ref BLE_USER_MEM_TYPES. */
} ble_evt_user_mem_request_t;
/**@brief Event structure for @ref BLE_EVT_USER_MEM_RELEASE. */
typedef struct
{
uint8_t type; /**< User memory type, see @ref BLE_USER_MEM_TYPES. */
ble_user_mem_block_t mem_block; /**< User memory block */
} ble_evt_user_mem_release_t;
/**@brief Event structure for events not associated with a specific function module. */
typedef struct
{
uint16_t conn_handle; /**< Connection Handle on which this event occurred. */
union
{
ble_evt_tx_complete_t tx_complete; /**< Transmission Complete. */
ble_evt_user_mem_request_t user_mem_request; /**< User Memory Request Event Parameters. */
ble_evt_user_mem_release_t user_mem_release; /**< User Memory Release Event Parameters. */
} params;
} ble_common_evt_t;
/**@brief BLE Event header. */
typedef struct
{
uint16_t evt_id; /**< Value from a BLE_<module>_EVT series. */
uint16_t evt_len; /**< Length in octets excluding this header. */
} ble_evt_hdr_t;
/**@brief Common BLE Event type, wrapping the module specific event reports. */
typedef struct
{
ble_evt_hdr_t header; /**< Event header. */
union
{
ble_common_evt_t common_evt; /**< Common Event, evt_id in BLE_EVT_* series. */
ble_gap_evt_t gap_evt; /**< GAP originated event, evt_id in BLE_GAP_EVT_* series. */
ble_l2cap_evt_t l2cap_evt; /**< L2CAP originated event, evt_id in BLE_L2CAP_EVT* series. */
ble_gattc_evt_t gattc_evt; /**< GATT client originated event, evt_id in BLE_GATTC_EVT* series. */
ble_gatts_evt_t gatts_evt; /**< GATT server originated event, evt_id in BLE_GATTS_EVT* series. */
} evt;
} ble_evt_t;
/**
* @brief Version Information.
*/
typedef struct
{
uint8_t version_number; /**< Link Layer Version number for BT 4.1 spec is 7 (https://www.bluetooth.org/en-us/specification/assigned-numbers/link-layer). */
uint16_t company_id; /**< Company ID, Nordic Semiconductor's company ID is 89 (0x0059) (https://www.bluetooth.org/apps/content/Default.aspx?doc_id=49708). */
uint16_t subversion_number; /**< Link Layer Sub Version number, corresponds to the SoftDevice Config ID or Firmware ID (FWID). */
} ble_version_t;
/**@brief Mutual exclusion of radio activity and CPU execution.
*
* This option configures the application's access to the CPU when the radio is active. The
* application can configure itself to be blocked from using the CPU while the radio is
* active. By default, the application will be able to share CPU time with the SoftDevice
* during radio activity. This parameter structure is used together with @ref sd_ble_opt_set
* to configure the @ref BLE_COMMON_OPT_RADIO_CPU_MUTEX option.
*
* @note Note that the application should use this option to configure the SoftDevice to block the
* CPU during radio activity (i.e enable mutual exclusion) when running the SoftDevice on
* hardware affected by PAN #44 "CCM may exceed real time requirements"and PAN #45 "AAR may
* exceed real time requirements".
*
* @note Note that when acting as a scanner, the mutex is only enabled for radio TX activity.
*
* @note @ref sd_ble_opt_get is not supported for this option.
*
*/
typedef struct
{
uint8_t enable : 1; /**< Enable mutual exclusion of radio activity and the CPU execution. */
} ble_common_opt_radio_cpu_mutex_t;
/**@brief Option structure for common options. */
typedef union
{
ble_common_opt_radio_cpu_mutex_t radio_cpu_mutex; /**< Parameters for the option for the mutual exclusion of radio activity and CPU execution. */
} ble_common_opt_t;
/**@brief Common BLE Option type, wrapping the module specific options. */
typedef union
{
ble_common_opt_t common_opt; /**< Common option, opt_id in BLE_COMMON_OPT_* series. */
ble_gap_opt_t gap_opt; /**< GAP option, opt_id in BLE_GAP_OPT_* series. */
} ble_opt_t;
/**
* @brief BLE GATTS init options
*/
typedef struct
{
ble_gatts_enable_params_t gatts_enable_params; /**< GATTS init options @ref ble_gatts_enable_params_t. */
} ble_enable_params_t;
/** @} */
/** @addtogroup BLE_COMMON_FUNCTIONS Functions
* @{ */
/**@brief Enable the BLE stack
*
* @param[in] p_ble_enable_params Pointer to ble_enable_params_t
*
* @details This call initializes the BLE stack, no other BLE related function can be called before this one.
*
* @return @ref NRF_SUCCESS BLE the BLE stack has been initialized successfully
* @retval @ref NRF_ERROR_INVALID_STATE the BLE stack had already been initialized and cannot be reinitialized.
* @return @ref NRF_ERROR_INVALID_ADDR Invalid or not sufficiently aligned pointer supplied.
* @return @ref NRF_ERROR_INVALID_LENGTH The specified Attribute Table size is either too small or not a multiple of 4.
* The minimum acceptable size is defined by @ref BLE_GATTS_ATTR_TAB_SIZE_MIN.
* @return @ref NRF_ERROR_NO_MEM The Attribute Table size is too large. Decrease size in @ref ble_gatts_enable_params_t.
*/
SVCALL(SD_BLE_ENABLE, uint32_t, sd_ble_enable(ble_enable_params_t * p_ble_enable_params));
/**@brief Get an event from the pending events queue.
*
* @param[out] p_dest Pointer to buffer to be filled in with an event, or NULL to retrieve the event length. This buffer <b>must be 4-byte aligned in memory</b>.
* @param[in, out] p_len Pointer the length of the buffer, on return it is filled with the event length.
*
* @details This call allows the application to pull a BLE event from the BLE stack. The application is signalled that an event is
* available from the BLE stack by the triggering of the SD_EVT_IRQn interrupt.
* The application is free to choose whether to call this function from thread mode (main context) or directly from the Interrupt Service Routine
* that maps to SD_EVT_IRQn. In any case however, and because the BLE stack runs at a higher priority than the application, this function should be called
* in a loop (until @ref NRF_ERROR_NOT_FOUND is returned) every time SD_EVT_IRQn is raised to ensure that all available events are pulled from the BLE stack.
* Failure to do so could potentially leave events in the internal queue without the application being aware of this fact.
* Sizing the p_dest buffer is equally important, since the application needs to provide all the memory necessary for the event to be copied into
* application memory. If the buffer provided is not large enough to fit the entire contents of the event, @ref NRF_ERROR_DATA_SIZE will be returned
* and the application can then call again with a larger buffer size.
* Please note that because of the variable length nature of some events, sizeof(ble_evt_t) will not always be large enough to fit certain events,
* and so it is the application's responsibility to provide an amount of memory large enough so that the relevant event is copied in full.
* The application may "peek" the event length by providing p_dest as a NULL pointer and inspecting the value of *p_len upon return.
*
* @note The pointer supplied must be aligned to the extend defined by @ref BLE_EVTS_PTR_ALIGNMENT
*
* @retval ::NRF_SUCCESS Event pulled and stored into the supplied buffer.
* @retval ::NRF_ERROR_INVALID_ADDR Invalid or not sufficiently aligned pointer supplied.
* @retval ::NRF_ERROR_NOT_FOUND No events ready to be pulled.
* @retval ::NRF_ERROR_DATA_SIZE Event ready but could not fit into the supplied buffer.
*/
SVCALL(SD_BLE_EVT_GET, uint32_t, sd_ble_evt_get(uint8_t *p_dest, uint16_t *p_len));
/**@brief Get the total number of available application transmission buffers per link in the BLE stack.
*
* @details This call allows the application to obtain the total number of
* transmission buffers available per link for application data. Please note that
* this does not give the number of free buffers, but rather the total amount of them.
* The application has two options to handle its own application transmission buffers:
* - Use a simple arithmetic calculation: at boot time the application should use this function
* to find out the total amount of buffers available to it and store it in a variable.
* Every time a packet that consumes an application buffer is sent using any of the
* exposed functions in this BLE API, the application should decrement that variable.
* Conversely, whenever a @ref BLE_EVT_TX_COMPLETE event is received by the application
* it should retrieve the count field in such event and add that number to the same
* variable storing the number of available packets.
* This mechanism allows the application to be aware at any time of the number of
* application packets available in the BLE stack's internal buffers, and therefore
* it can know with certainty whether it is possible to send more data or it has to
* wait for a @ref BLE_EVT_TX_COMPLETE event before it proceeds.
* - Choose to simply not keep track of available buffers at all, and instead handle the
* @ref BLE_ERROR_NO_TX_BUFFERS error by queueing the packet to be transmitted and
* try again as soon as a @ref BLE_EVT_TX_COMPLETE event arrives.
*
* The API functions that <b>may</b> consume an application buffer depending on
* the parameters supplied to them can be found below:
*
* - @ref sd_ble_gattc_write (write without response only)
* - @ref sd_ble_gatts_hvx (notifications only)
* - @ref sd_ble_l2cap_tx (all packets)
*
* @param[out] p_count Pointer to a uint8_t which will contain the number of application transmission buffers upon
* successful return.
*
* @retval ::NRF_SUCCESS Number of application transmission buffers retrieved successfully.
* @retval ::NRF_ERROR_INVALID_ADDR Invalid pointer supplied.
*/
SVCALL(SD_BLE_TX_BUFFER_COUNT_GET, uint32_t, sd_ble_tx_buffer_count_get(uint8_t *p_count));
/**@brief Add a Vendor Specific UUID.
*
* @details This call enables the application to add a vendor specific UUID to the BLE stack's table,
* for later use all other modules and APIs. This then allows the application to use the shorter,
* 24-bit @ref ble_uuid_t format when dealing with both 16-bit and 128-bit UUIDs without having to
* check for lengths and having split code paths. The way that this is accomplished is by extending the
* grouping mechanism that the Bluetooth SIG standard base UUID uses for all other 128-bit UUIDs. The
* type field in the @ref ble_uuid_t structure is an index (relative to @ref BLE_UUID_TYPE_VENDOR_BEGIN)
* to the table populated by multiple calls to this function, and the uuid field in the same structure
* contains the 2 bytes at indices 12 and 13. The number of possible 128-bit UUIDs available to the
* application is therefore the number of Vendor Specific UUIDs added with the help of this function times 65536,
* although restricted to modifying bytes 12 and 13 for each of the entries in the supplied array.
*
* @note Bytes 12 and 13 of the provided UUID will not be used internally, since those are always replaced by
* the 16-bit uuid field in @ref ble_uuid_t.
*
*
* @param[in] p_vs_uuid Pointer to a 16-octet (128-bit) little endian Vendor Specific UUID disregarding
* bytes 12 and 13.
* @param[out] p_uuid_type Pointer to a uint8_t where the type field in @ref ble_uuid_t corresponding to this UUID will be stored.
*
* @retval ::NRF_SUCCESS Successfully added the Vendor Specific UUID.
* @retval ::NRF_ERROR_INVALID_ADDR If p_vs_uuid or p_uuid_type is NULL or invalid.
* @retval ::NRF_ERROR_NO_MEM If there are no more free slots for VS UUIDs.
* @retval ::NRF_ERROR_FORBIDDEN If p_vs_uuid has already been added to the VS UUID table.
*/
SVCALL(SD_BLE_UUID_VS_ADD, uint32_t, sd_ble_uuid_vs_add(ble_uuid128_t const *p_vs_uuid, uint8_t *p_uuid_type));
/** @brief Decode little endian raw UUID bytes (16-bit or 128-bit) into a 24 bit @ref ble_uuid_t structure.
*
* @details The raw UUID bytes excluding bytes 12 and 13 (i.e. bytes 0-11 and 14-15) of p_uuid_le are compared
* to the corresponding ones in each entry of the table of vendor specific UUIDs populated with @ref sd_ble_uuid_vs_add
* to look for a match. If there is such a match, bytes 12 and 13 are returned as p_uuid->uuid and the index
* relative to @ref BLE_UUID_TYPE_VENDOR_BEGIN as p_uuid->type.
*
* @note If the UUID length supplied is 2, then the type set by this call will always be @ref BLE_UUID_TYPE_BLE.
*
* @param[in] uuid_le_len Length in bytes of the buffer pointed to by p_uuid_le (must be 2 or 16 bytes).
* @param[in] p_uuid_le Pointer pointing to little endian raw UUID bytes.
* @param[out] p_uuid Pointer to a @ref ble_uuid_t structure to be filled in.
*
* @retval ::NRF_SUCCESS Successfully decoded into the @ref ble_uuid_t structure.
* @retval ::NRF_ERROR_INVALID_ADDR Invalid pointer supplied.
* @retval ::NRF_ERROR_INVALID_LENGTH Invalid UUID length.
* @retval ::NRF_ERROR_NOT_FOUND For a 128-bit UUID, no match in the populated table of UUIDs.
*/
SVCALL(SD_BLE_UUID_DECODE, uint32_t, sd_ble_uuid_decode(uint8_t uuid_le_len, uint8_t const *p_uuid_le, ble_uuid_t *p_uuid));
/** @brief Encode a @ref ble_uuid_t structure into little endian raw UUID bytes (16-bit or 128-bit).
*
* @note The pointer to the destination buffer p_uuid_le may be NULL, in which case only the validity and size of p_uuid is computed.
*
* @param[in] p_uuid Pointer to a @ref ble_uuid_t structure that will be encoded into bytes.
* @param[out] p_uuid_le_len Pointer to a uint8_t that will be filled with the encoded length (2 or 16 bytes).
* @param[out] p_uuid_le Pointer to a buffer where the little endian raw UUID bytes (2 or 16) will be stored.
*
* @retval ::NRF_SUCCESS Successfully encoded into the buffer.
* @retval ::NRF_ERROR_INVALID_ADDR Invalid pointer supplied.
* @retval ::NRF_ERROR_INVALID_PARAM Invalid UUID type.
*/
SVCALL(SD_BLE_UUID_ENCODE, uint32_t, sd_ble_uuid_encode(ble_uuid_t const *p_uuid, uint8_t *p_uuid_le_len, uint8_t *p_uuid_le));
/**@brief Get Version Information.
*
* @details This call allows the application to get the BLE stack version information.
*
* @param[out] p_version Pointer to a ble_version_t structure to be filled in.
*
* @retval ::NRF_SUCCESS Version information stored successfully.
* @retval ::NRF_ERROR_INVALID_ADDR Invalid pointer supplied.
* @retval ::NRF_ERROR_BUSY The BLE stack is busy (typically doing a locally-initiated disconnection procedure).
*/
SVCALL(SD_BLE_VERSION_GET, uint32_t, sd_ble_version_get(ble_version_t *p_version));
/**@brief Provide a user memory block.
*
* @note This call can only be used as a response to a @ref BLE_EVT_USER_MEM_REQUEST event issued to the application.
*
* @param[in] conn_handle Connection handle.
* @param[in,out] p_block Pointer to a user memory block structure.
*
* @retval ::NRF_SUCCESS Successfully queued a response to the peer.
* @retval ::BLE_ERROR_INVALID_CONN_HANDLE Invalid Connection Handle.
* @retval ::NRF_ERROR_INVALID_STATE Invalid Connection state or no execute write request pending.
* @retval ::NRF_ERROR_BUSY The BLE stack is busy. Retry at later time.
*/
SVCALL(SD_BLE_USER_MEM_REPLY, uint32_t, sd_ble_user_mem_reply(uint16_t conn_handle, ble_user_mem_block_t const *p_block));
/**@brief Set a BLE option.
*
* @details This call allows the application to set the value of an option.
*
* @param[in] opt_id Option ID.
* @param[in] p_opt Pointer to a ble_opt_t structure containing the option value.
*
* @retval ::NRF_SUCCESS Option set successfully.
* @retval ::NRF_ERROR_INVALID_ADDR Invalid pointer supplied.
* @retval ::BLE_ERROR_INVALID_CONN_HANDLE Invalid Connection Handle.
* @retval ::NRF_ERROR_INVALID_PARAM Invalid parameter(s) supplied, check parameter limits and constraints.
* @retval ::NRF_ERROR_INVALID_STATE Unable to set the parameter at this time.
* @retval ::NRF_ERROR_BUSY The BLE stack is busy or the previous procedure has not completed.
*/
SVCALL(SD_BLE_OPT_SET, uint32_t, sd_ble_opt_set(uint32_t opt_id, ble_opt_t const *p_opt));
/**@brief Get a BLE option.
*
* @details This call allows the application to retrieve the value of an option.
*
* @param[in] opt_id Option ID.
* @param[out] p_opt Pointer to a ble_opt_t structure to be filled in.
*
* @retval ::NRF_SUCCESS Option retrieved successfully.
* @retval ::NRF_ERROR_INVALID_ADDR Invalid pointer supplied.
* @retval ::BLE_ERROR_INVALID_CONN_HANDLE Invalid Connection Handle.
* @retval ::NRF_ERROR_INVALID_PARAM Invalid parameter(s) supplied, check parameter limits and constraints.
* @retval ::NRF_ERROR_INVALID_STATE Unable to retrieve the parameter at this time.
* @retval ::NRF_ERROR_BUSY The BLE stack is busy or the previous procedure has not completed.
* @retval ::NRF_ERROR_NOT_SUPPORTED This option is not supported.
*
*/
SVCALL(SD_BLE_OPT_GET, uint32_t, sd_ble_opt_get(uint32_t opt_id, ble_opt_t *p_opt));
/** @} */
#endif /* BLE_H__ */
/**
@}
@}
*/

View File

@ -0,0 +1,83 @@
/*
* Copyright (c) Nordic Semiconductor ASA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* 4. This software must only be used in a processor manufactured by Nordic
* Semiconductor ASA, or in a processor manufactured by a third party that
* is used in combination with a processor manufactured by Nordic Semiconductor.
*
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/**
@addtogroup BLE_COMMON
@{
@addtogroup nrf_error
@{
@ingroup BLE_COMMON
@}
@defgroup ble_err General error codes
@{
@brief General error code definitions for the BLE API.
@ingroup BLE_COMMON
*/
#ifndef NRF_BLE_ERR_H__
#define NRF_BLE_ERR_H__
#include "nrf_error.h"
/* @defgroup BLE_ERRORS Error Codes
* @{ */
#define BLE_ERROR_NOT_ENABLED (NRF_ERROR_STK_BASE_NUM+0x001) /**< @ref sd_ble_enable has not been called. */
#define BLE_ERROR_INVALID_CONN_HANDLE (NRF_ERROR_STK_BASE_NUM+0x002) /**< Invalid connection handle. */
#define BLE_ERROR_INVALID_ATTR_HANDLE (NRF_ERROR_STK_BASE_NUM+0x003) /**< Invalid attribute handle. */
#define BLE_ERROR_NO_TX_BUFFERS (NRF_ERROR_STK_BASE_NUM+0x004) /**< Buffer capacity exceeded. */
#define BLE_ERROR_INVALID_ROLE (NRF_ERROR_STK_BASE_NUM+0x005) /**< Invalid role. */
/** @} */
/** @defgroup BLE_ERROR_SUBRANGES Module specific error code subranges
* @brief Assignment of subranges for module specific error codes.
* @note For specific error codes, see ble_<module>.h or ble_error_<module>.h.
* @{ */
#define NRF_L2CAP_ERR_BASE (NRF_ERROR_STK_BASE_NUM+0x100) /**< L2CAP specific errors. */
#define NRF_GAP_ERR_BASE (NRF_ERROR_STK_BASE_NUM+0x200) /**< GAP specific errors. */
#define NRF_GATTC_ERR_BASE (NRF_ERROR_STK_BASE_NUM+0x300) /**< GATT client specific errors. */
#define NRF_GATTS_ERR_BASE (NRF_ERROR_STK_BASE_NUM+0x400) /**< GATT server specific errors. */
/** @} */
#endif
/**
@}
@}
*/

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,200 @@
/*
* Copyright (c) Nordic Semiconductor ASA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* 4. This software must only be used in a processor manufactured by Nordic
* Semiconductor ASA, or in a processor manufactured by a third party that
* is used in combination with a processor manufactured by Nordic Semiconductor.
*
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/**
@addtogroup BLE_GATT Generic Attribute Profile (GATT) Common
@{
@brief Common definitions and prototypes for the GATT interfaces.
*/
#ifndef BLE_GATT_H__
#define BLE_GATT_H__
#include "ble_types.h"
#include "ble_ranges.h"
/** @addtogroup BLE_GATT_DEFINES Defines
* @{ */
/** @brief Default MTU size. */
#define GATT_MTU_SIZE_DEFAULT 23
/** @brief Only the default MTU size of 23 is currently supported. */
#define GATT_RX_MTU 23
/**@brief Invalid Attribute Handle. */
#define BLE_GATT_HANDLE_INVALID 0x0000
/** @defgroup BLE_GATT_TIMEOUT_SOURCES GATT Timeout sources
* @{ */
#define BLE_GATT_TIMEOUT_SRC_PROTOCOL 0x00 /**< ATT Protocol timeout. */
/** @} */
/** @defgroup BLE_GATT_WRITE_OPS GATT Write operations
* @{ */
#define BLE_GATT_OP_INVALID 0x00 /**< Invalid Operation. */
#define BLE_GATT_OP_WRITE_REQ 0x01 /**< Write Request. */
#define BLE_GATT_OP_WRITE_CMD 0x02 /**< Write Command. */
#define BLE_GATT_OP_SIGN_WRITE_CMD 0x03 /**< Signed Write Command. */
#define BLE_GATT_OP_PREP_WRITE_REQ 0x04 /**< Prepare Write Request. */
#define BLE_GATT_OP_EXEC_WRITE_REQ 0x05 /**< Execute Write Request. */
/** @} */
/** @defgroup BLE_GATT_EXEC_WRITE_FLAGS GATT Execute Write flags
* @{ */
#define BLE_GATT_EXEC_WRITE_FLAG_PREPARED_CANCEL 0x00
#define BLE_GATT_EXEC_WRITE_FLAG_PREPARED_WRITE 0x01
/** @} */
/** @defgroup BLE_GATT_HVX_TYPES GATT Handle Value operations
* @{ */
#define BLE_GATT_HVX_INVALID 0x00 /**< Invalid Operation. */
#define BLE_GATT_HVX_NOTIFICATION 0x01 /**< Handle Value Notification. */
#define BLE_GATT_HVX_INDICATION 0x02 /**< Handle Value Indication. */
/** @} */
/** @defgroup BLE_GATT_STATUS_CODES GATT Status Codes
* @{ */
#define BLE_GATT_STATUS_SUCCESS 0x0000 /**< Success. */
#define BLE_GATT_STATUS_UNKNOWN 0x0001 /**< Unknown or not applicable status. */
#define BLE_GATT_STATUS_ATTERR_INVALID 0x0100 /**< ATT Error: Invalid Error Code. */
#define BLE_GATT_STATUS_ATTERR_INVALID_HANDLE 0x0101 /**< ATT Error: Invalid Attribute Handle. */
#define BLE_GATT_STATUS_ATTERR_READ_NOT_PERMITTED 0x0102 /**< ATT Error: Read not permitted. */
#define BLE_GATT_STATUS_ATTERR_WRITE_NOT_PERMITTED 0x0103 /**< ATT Error: Write not permitted. */
#define BLE_GATT_STATUS_ATTERR_INVALID_PDU 0x0104 /**< ATT Error: Used in ATT as Invalid PDU. */
#define BLE_GATT_STATUS_ATTERR_INSUF_AUTHENTICATION 0x0105 /**< ATT Error: Authenticated link required. */
#define BLE_GATT_STATUS_ATTERR_REQUEST_NOT_SUPPORTED 0x0106 /**< ATT Error: Used in ATT as Request Not Supported. */
#define BLE_GATT_STATUS_ATTERR_INVALID_OFFSET 0x0107 /**< ATT Error: Offset specified was past the end of the attribute. */
#define BLE_GATT_STATUS_ATTERR_INSUF_AUTHORIZATION 0x0108 /**< ATT Error: Used in ATT as Insufficient Authorisation. */
#define BLE_GATT_STATUS_ATTERR_PREPARE_QUEUE_FULL 0x0109 /**< ATT Error: Used in ATT as Prepare Queue Full. */
#define BLE_GATT_STATUS_ATTERR_ATTRIBUTE_NOT_FOUND 0x010A /**< ATT Error: Used in ATT as Attribute not found. */
#define BLE_GATT_STATUS_ATTERR_ATTRIBUTE_NOT_LONG 0x010B /**< ATT Error: Attribute cannot be read or written using read/write blob requests. */
#define BLE_GATT_STATUS_ATTERR_INSUF_ENC_KEY_SIZE 0x010C /**< ATT Error: Encryption key size used is insufficient. */
#define BLE_GATT_STATUS_ATTERR_INVALID_ATT_VAL_LENGTH 0x010D /**< ATT Error: Invalid value size. */
#define BLE_GATT_STATUS_ATTERR_UNLIKELY_ERROR 0x010E /**< ATT Error: Very unlikely error. */
#define BLE_GATT_STATUS_ATTERR_INSUF_ENCRYPTION 0x010F /**< ATT Error: Encrypted link required. */
#define BLE_GATT_STATUS_ATTERR_UNSUPPORTED_GROUP_TYPE 0x0110 /**< ATT Error: Attribute type is not a supported grouping attribute. */
#define BLE_GATT_STATUS_ATTERR_INSUF_RESOURCES 0x0111 /**< ATT Error: Encrypted link required. */
#define BLE_GATT_STATUS_ATTERR_RFU_RANGE1_BEGIN 0x0112 /**< ATT Error: Reserved for Future Use range #1 begin. */
#define BLE_GATT_STATUS_ATTERR_RFU_RANGE1_END 0x017F /**< ATT Error: Reserved for Future Use range #1 end. */
#define BLE_GATT_STATUS_ATTERR_APP_BEGIN 0x0180 /**< ATT Error: Application range begin. */
#define BLE_GATT_STATUS_ATTERR_APP_END 0x019F /**< ATT Error: Application range end. */
#define BLE_GATT_STATUS_ATTERR_RFU_RANGE2_BEGIN 0x01A0 /**< ATT Error: Reserved for Future Use range #2 begin. */
#define BLE_GATT_STATUS_ATTERR_RFU_RANGE2_END 0x01DF /**< ATT Error: Reserved for Future Use range #2 end. */
#define BLE_GATT_STATUS_ATTERR_RFU_RANGE3_BEGIN 0x01E0 /**< ATT Error: Reserved for Future Use range #3 begin. */
#define BLE_GATT_STATUS_ATTERR_RFU_RANGE3_END 0x01FC /**< ATT Error: Reserved for Future Use range #3 end. */
#define BLE_GATT_STATUS_ATTERR_CPS_CCCD_CONFIG_ERROR 0x01FD /**< ATT Common Profile and Service Error: Client Characteristic Configuration Descriptor improperly configured. */
#define BLE_GATT_STATUS_ATTERR_CPS_PROC_ALR_IN_PROG 0x01FE /**< ATT Common Profile and Service Error: Procedure Already in Progress. */
#define BLE_GATT_STATUS_ATTERR_CPS_OUT_OF_RANGE 0x01FF /**< ATT Common Profile and Service Error: Out Of Range. */
/** @} */
/** @defgroup BLE_GATT_CPF_FORMATS Characteristic Presentation Formats
* @note Found at http://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorViewer.aspx?u=org.bluetooth.descriptor.gatt.characteristic_presentation_format.xml
* @{ */
#define BLE_GATT_CPF_FORMAT_RFU 0x00 /**< Reserved For Future Use. */
#define BLE_GATT_CPF_FORMAT_BOOLEAN 0x01 /**< Boolean. */
#define BLE_GATT_CPF_FORMAT_2BIT 0x02 /**< Unsigned 2-bit integer. */
#define BLE_GATT_CPF_FORMAT_NIBBLE 0x03 /**< Unsigned 4-bit integer. */
#define BLE_GATT_CPF_FORMAT_UINT8 0x04 /**< Unsigned 8-bit integer. */
#define BLE_GATT_CPF_FORMAT_UINT12 0x05 /**< Unsigned 12-bit integer. */
#define BLE_GATT_CPF_FORMAT_UINT16 0x06 /**< Unsigned 16-bit integer. */
#define BLE_GATT_CPF_FORMAT_UINT24 0x07 /**< Unsigned 24-bit integer. */
#define BLE_GATT_CPF_FORMAT_UINT32 0x08 /**< Unsigned 32-bit integer. */
#define BLE_GATT_CPF_FORMAT_UINT48 0x09 /**< Unsigned 48-bit integer. */
#define BLE_GATT_CPF_FORMAT_UINT64 0x0A /**< Unsigned 64-bit integer. */
#define BLE_GATT_CPF_FORMAT_UINT128 0x0B /**< Unsigned 128-bit integer. */
#define BLE_GATT_CPF_FORMAT_SINT8 0x0C /**< Signed 2-bit integer. */
#define BLE_GATT_CPF_FORMAT_SINT12 0x0D /**< Signed 12-bit integer. */
#define BLE_GATT_CPF_FORMAT_SINT16 0x0E /**< Signed 16-bit integer. */
#define BLE_GATT_CPF_FORMAT_SINT24 0x0F /**< Signed 24-bit integer. */
#define BLE_GATT_CPF_FORMAT_SINT32 0x10 /**< Signed 32-bit integer. */
#define BLE_GATT_CPF_FORMAT_SINT48 0x11 /**< Signed 48-bit integer. */
#define BLE_GATT_CPF_FORMAT_SINT64 0x12 /**< Signed 64-bit integer. */
#define BLE_GATT_CPF_FORMAT_SINT128 0x13 /**< Signed 128-bit integer. */
#define BLE_GATT_CPF_FORMAT_FLOAT32 0x14 /**< IEEE-754 32-bit floating point. */
#define BLE_GATT_CPF_FORMAT_FLOAT64 0x15 /**< IEEE-754 64-bit floating point. */
#define BLE_GATT_CPF_FORMAT_SFLOAT 0x16 /**< IEEE-11073 16-bit SFLOAT. */
#define BLE_GATT_CPF_FORMAT_FLOAT 0x17 /**< IEEE-11073 32-bit FLOAT. */
#define BLE_GATT_CPF_FORMAT_DUINT16 0x18 /**< IEEE-20601 format. */
#define BLE_GATT_CPF_FORMAT_UTF8S 0x19 /**< UTF-8 string. */
#define BLE_GATT_CPF_FORMAT_UTF16S 0x1A /**< UTF-16 string. */
#define BLE_GATT_CPF_FORMAT_STRUCT 0x1B /**< Opaque Structure. */
/** @} */
/** @defgroup BLE_GATT_CPF_NAMESPACES GATT Bluetooth Namespaces
* @{
*/
#define BLE_GATT_CPF_NAMESPACE_BTSIG 0x01 /**< Bluetooth SIG defined Namespace. */
#define BLE_GATT_CPF_NAMESPACE_DESCRIPTION_UNKNOWN 0x0000 /**< Namespace Description Unknown. */
/** @} */
/** @} */
/** @addtogroup BLE_GATT_STRUCTURES Structures
* @{ */
/**@brief GATT Characteristic Properties. */
typedef struct
{
/* Standard properties */
uint8_t broadcast :1; /**< Broadcasting of the value permitted. */
uint8_t read :1; /**< Reading the value permitted. */
uint8_t write_wo_resp :1; /**< Writing the value with Write Command permitted. */
uint8_t write :1; /**< Writing the value with Write Request permitted. */
uint8_t notify :1; /**< Notications of the value permitted. */
uint8_t indicate :1; /**< Indications of the value permitted. */
uint8_t auth_signed_wr :1; /**< Writing the value with Signed Write Command permitted. */
} ble_gatt_char_props_t;
/**@brief GATT Characteristic Extended Properties. */
typedef struct
{
/* Extended properties */
uint8_t reliable_wr :1; /**< Writing the value with Queued Write operations permitted. */
uint8_t wr_aux :1; /**< Writing the Characteristic User Description descriptor permitted. */
} ble_gatt_char_ext_props_t;
#endif // BLE_GATT_H__
/** @} */
/**
@}
@}
*/

View File

@ -0,0 +1,441 @@
/*
* Copyright (c) Nordic Semiconductor ASA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* 4. This software must only be used in a processor manufactured by Nordic
* Semiconductor ASA, or in a processor manufactured by a third party that
* is used in combination with a processor manufactured by Nordic Semiconductor.
*
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/**
@addtogroup BLE_GATTC Generic Attribute Profile (GATT) Client
@{
@brief Definitions and prototypes for the GATT Client interface.
*/
#ifndef BLE_GATTC_H__
#define BLE_GATTC_H__
#include "ble_gatt.h"
#include "ble_types.h"
#include "ble_ranges.h"
#include "nrf_svc.h"
/** @addtogroup BLE_GATTC_ENUMERATIONS Enumerations
* @{ */
/**@brief GATTC API SVC numbers. */
enum BLE_GATTC_SVCS
{
SD_BLE_GATTC_PRIMARY_SERVICES_DISCOVER = BLE_GATTC_SVC_BASE, /**< Primary Service Discovery. */
SD_BLE_GATTC_RELATIONSHIPS_DISCOVER, /**< Relationship Discovery. */
SD_BLE_GATTC_CHARACTERISTICS_DISCOVER, /**< Characteristic Discovery. */
SD_BLE_GATTC_DESCRIPTORS_DISCOVER, /**< Characteristic Descriptor Discovery. */
SD_BLE_GATTC_CHAR_VALUE_BY_UUID_READ, /**< Read Characteristic Value by UUID. */
SD_BLE_GATTC_READ, /**< Generic read. */
SD_BLE_GATTC_CHAR_VALUES_READ, /**< Read multiple Characteristic Values. */
SD_BLE_GATTC_WRITE, /**< Generic write. */
SD_BLE_GATTC_HV_CONFIRM /**< Handle Value Confirmation. */
};
/**
* @brief GATT Client Event IDs.
*/
enum BLE_GATTC_EVTS
{
BLE_GATTC_EVT_PRIM_SRVC_DISC_RSP = BLE_GATTC_EVT_BASE, /**< Primary Service Discovery Response event. @ref ble_gattc_evt_prim_srvc_disc_rsp_t */
BLE_GATTC_EVT_REL_DISC_RSP, /**< Relationship Discovery Response event. @ref ble_gattc_evt_rel_disc_rsp_t */
BLE_GATTC_EVT_CHAR_DISC_RSP, /**< Characteristic Discovery Response event. @ref ble_gattc_evt_char_disc_rsp_t */
BLE_GATTC_EVT_DESC_DISC_RSP, /**< Descriptor Discovery Response event. @ref ble_gattc_evt_desc_disc_rsp_t */
BLE_GATTC_EVT_CHAR_VAL_BY_UUID_READ_RSP, /**< Read By UUID Response event. @ref ble_gattc_evt_char_val_by_uuid_read_rsp_t */
BLE_GATTC_EVT_READ_RSP, /**< Read Response event. @ref ble_gattc_evt_read_rsp_t */
BLE_GATTC_EVT_CHAR_VALS_READ_RSP, /**< Read multiple Response event. @ref ble_gattc_evt_char_vals_read_rsp_t */
BLE_GATTC_EVT_WRITE_RSP, /**< Write Response event. @ref ble_gattc_evt_write_rsp_t */
BLE_GATTC_EVT_HVX, /**< Handle Value Notification or Indication event. @ref ble_gattc_evt_hvx_t */
BLE_GATTC_EVT_TIMEOUT /**< Timeout event. @ref ble_gattc_evt_timeout_t */
};
/** @} */
/** @addtogroup BLE_GATTC_DEFINES Defines
* @{ */
/** @defgroup BLE_ERRORS_GATTC SVC return values specific to GATTC
* @{ */
#define BLE_ERROR_GATTC_PROC_NOT_PERMITTED (NRF_GATTC_ERR_BASE + 0x000) /**< Procedure not Permitted. */
/** @} */
/**@brief Last Attribute Handle. */
#define BLE_GATTC_HANDLE_END 0xFFFF
/** @} */
/** @addtogroup BLE_GATTC_STRUCTURES Structures
* @{ */
/**@brief Operation Handle Range. */
typedef struct
{
uint16_t start_handle; /**< Start Handle. */
uint16_t end_handle; /**< End Handle. */
} ble_gattc_handle_range_t;
/**@brief GATT service. */
typedef struct
{
ble_uuid_t uuid; /**< Service UUID. */
ble_gattc_handle_range_t handle_range; /**< Service Handle Range. */
} ble_gattc_service_t;
/**@brief GATT include. */
typedef struct
{
uint16_t handle; /**< Include Handle. */
ble_gattc_service_t included_srvc; /**< Handle of the included service. */
} ble_gattc_include_t;
/**@brief GATT characteristic. */
typedef struct
{
ble_uuid_t uuid; /**< Characteristic UUID. */
ble_gatt_char_props_t char_props; /**< Characteristic Properties. */
uint8_t char_ext_props : 1; /**< Extended properties present. */
uint16_t handle_decl; /**< Handle of the Characteristic Declaration. */
uint16_t handle_value; /**< Handle of the Characteristic Value. */
} ble_gattc_char_t;
/**@brief GATT descriptor. */
typedef struct
{
uint16_t handle; /**< Descriptor Handle. */
ble_uuid_t uuid; /**< Descriptor UUID. */
} ble_gattc_desc_t;
/**@brief Write Parameters. */
typedef struct
{
uint8_t write_op; /**< Write Operation to be performed, see @ref BLE_GATT_WRITE_OPS. */
uint8_t flags; /**< Flags, see @ref BLE_GATT_EXEC_WRITE_FLAGS. */
uint16_t handle; /**< Handle to the attribute to be written. */
uint16_t offset; /**< Offset in bytes. @note For WRITE_CMD and WRITE_REQ, offset must be 0. */
uint16_t len; /**< Length of data in bytes. */
uint8_t *p_value; /**< Pointer to the value data. */
} ble_gattc_write_params_t;
/**@brief Event structure for @ref BLE_GATTC_EVT_PRIM_SRVC_DISC_RSP. */
typedef struct
{
uint16_t count; /**< Service count. */
ble_gattc_service_t services[1]; /**< Service data, variable length. */
} ble_gattc_evt_prim_srvc_disc_rsp_t;
/**@brief Event structure for @ref BLE_GATTC_EVT_REL_DISC_RSP. */
typedef struct
{
uint16_t count; /**< Include count. */
ble_gattc_include_t includes[1]; /**< Include data, variable length. */
} ble_gattc_evt_rel_disc_rsp_t;
/**@brief Event structure for @ref BLE_GATTC_EVT_CHAR_DISC_RSP. */
typedef struct
{
uint16_t count; /**< Characteristic count. */
ble_gattc_char_t chars[1]; /**< Characteristic data, variable length. */
} ble_gattc_evt_char_disc_rsp_t;
/**@brief Event structure for @ref BLE_GATTC_EVT_DESC_DISC_RSP. */
typedef struct
{
uint16_t count; /**< Descriptor count. */
ble_gattc_desc_t descs[1]; /**< Descriptor data, variable length. */
} ble_gattc_evt_desc_disc_rsp_t;
/**@brief GATT read by UUID handle value pair. */
typedef struct
{
uint16_t handle; /**< Attribute Handle. */
uint8_t *p_value; /**< Pointer to value, variable length (length available as value_len in @ref ble_gattc_evt_char_val_by_uuid_read_rsp_t).
Please note that this pointer is absolute to the memory provided by the user when retrieving the event,
so it will effectively point to a location inside the handle_value array. */
} ble_gattc_handle_value_t;
/**@brief Event structure for @ref BLE_GATTC_EVT_CHAR_VAL_BY_UUID_READ_RSP. */
typedef struct
{
uint16_t count; /**< Handle-Value Pair Count. */
uint16_t value_len; /**< Length of the value in Handle-Value(s) list. */
ble_gattc_handle_value_t handle_value[1]; /**< Handle-Value(s) list, variable length. */
} ble_gattc_evt_char_val_by_uuid_read_rsp_t;
/**@brief Event structure for @ref BLE_GATTC_EVT_READ_RSP. */
typedef struct
{
uint16_t handle; /**< Attribute Handle. */
uint16_t offset; /**< Offset of the attribute data. */
uint16_t len; /**< Attribute data length. */
uint8_t data[1]; /**< Attribute data, variable length. */
} ble_gattc_evt_read_rsp_t;
/**@brief Event structure for @ref BLE_GATTC_EVT_CHAR_VALS_READ_RSP. */
typedef struct
{
uint16_t len; /**< Concatenated Attribute values length. */
uint8_t values[1]; /**< Attribute values, variable length. */
} ble_gattc_evt_char_vals_read_rsp_t;
/**@brief Event structure for @ref BLE_GATTC_EVT_WRITE_RSP. */
typedef struct
{
uint16_t handle; /**< Attribute Handle. */
uint8_t write_op; /**< Type of write operation, see @ref BLE_GATT_WRITE_OPS. */
uint16_t offset; /**< Data offset. */
uint16_t len; /**< Data length. */
uint8_t data[1]; /**< Data, variable length. */
} ble_gattc_evt_write_rsp_t;
/**@brief Event structure for @ref BLE_GATTC_EVT_HVX. */
typedef struct
{
uint16_t handle; /**< Handle to which the HVx operation applies. */
uint8_t type; /**< Indication or Notification, see @ref BLE_GATT_HVX_TYPES. */
uint16_t len; /**< Attribute data length. */
uint8_t data[1]; /**< Attribute data, variable length. */
} ble_gattc_evt_hvx_t;
/**@brief Event structure for @ref BLE_GATTC_EVT_TIMEOUT. */
typedef struct
{
uint8_t src; /**< Timeout source, see @ref BLE_GATT_TIMEOUT_SOURCES. */
} ble_gattc_evt_timeout_t;
/**@brief GATTC event structure. */
typedef struct
{
uint16_t conn_handle; /**< Connection Handle on which event occured. */
uint16_t gatt_status; /**< GATT status code for the operation, see @ref BLE_GATT_STATUS_CODES. */
uint16_t error_handle; /**< In case of error: The handle causing the error. In all other cases @ref BLE_GATT_HANDLE_INVALID. */
union
{
ble_gattc_evt_prim_srvc_disc_rsp_t prim_srvc_disc_rsp; /**< Primary Service Discovery Response Event Parameters. */
ble_gattc_evt_rel_disc_rsp_t rel_disc_rsp; /**< Relationship Discovery Response Event Parameters. */
ble_gattc_evt_char_disc_rsp_t char_disc_rsp; /**< Characteristic Discovery Response Event Parameters. */
ble_gattc_evt_desc_disc_rsp_t desc_disc_rsp; /**< Descriptor Discovery Response Event Parameters. */
ble_gattc_evt_char_val_by_uuid_read_rsp_t char_val_by_uuid_read_rsp; /**< Characteristic Value Read by UUID Response Event Parameters. */
ble_gattc_evt_read_rsp_t read_rsp; /**< Read Response Event Parameters. */
ble_gattc_evt_char_vals_read_rsp_t char_vals_read_rsp; /**< Characteristic Values Read Response Event Parameters. */
ble_gattc_evt_write_rsp_t write_rsp; /**< Write Response Event Parameters. */
ble_gattc_evt_hvx_t hvx; /**< Handle Value Notification/Indication Event Parameters. */
ble_gattc_evt_timeout_t timeout; /**< Timeout Event Parameters. */
} params; /**< Event Parameters. @note Only valid if @ref gatt_status == @ref BLE_GATT_STATUS_SUCCESS. */
} ble_gattc_evt_t;
/** @} */
/** @addtogroup BLE_GATTC_FUNCTIONS Functions
* @{ */
/**@brief Initiate or continue a GATT Primary Service Discovery procedure.
*
* @details This function initiates or resumes a Primary Service discovery procedure, starting from the supplied handle.
* If the last service has not been reached, this function must be called again with an updated start handle value to continue the search.
*
* @note If any of the discovered services have 128-bit UUIDs which are not present in the table provided to ble_vs_uuids_assign, a UUID structure with
* type @ref BLE_UUID_TYPE_UNKNOWN will be received in the corresponding event.
*
* @param[in] conn_handle The connection handle identifying the connection to perform this procedure on.
* @param[in] start_handle Handle to start searching from.
* @param[in] p_srvc_uuid Pointer to the service UUID to be found. If it is NULL, all primary services will be returned.
*
* @retval ::NRF_SUCCESS Successfully started or resumed the Primary Service Discovery procedure.
* @retval ::BLE_ERROR_INVALID_CONN_HANDLE Invalid Connection Handle.
* @retval ::NRF_ERROR_INVALID_STATE Invalid Connection State.
* @retval ::NRF_ERROR_INVALID_PARAM Invalid parameter(s) supplied.
* @retval ::NRF_ERROR_BUSY Client procedure already in progress.
*/
SVCALL(SD_BLE_GATTC_PRIMARY_SERVICES_DISCOVER, uint32_t, sd_ble_gattc_primary_services_discover(uint16_t conn_handle, uint16_t start_handle, ble_uuid_t const *p_srvc_uuid));
/**@brief Initiate or continue a GATT Relationship Discovery procedure.
*
* @details This function initiates or resumes the Find Included Services sub-procedure. If the last included service has not been reached,
* this must be called again with an updated handle range to continue the search.
*
* @param[in] conn_handle The connection handle identifying the connection to perform this procedure on.
* @param[in] p_handle_range A pointer to the range of handles of the Service to perform this procedure on.
*
* @retval ::NRF_SUCCESS Successfully started or resumed the Relationship Discovery procedure.
* @retval ::BLE_ERROR_INVALID_CONN_HANDLE Invalid Connection Handle.
* @retval ::NRF_ERROR_INVALID_STATE Invalid Connection State.
* @retval ::NRF_ERROR_INVALID_ADDR Invalid pointer supplied.
* @retval ::NRF_ERROR_INVALID_PARAM Invalid parameter(s) supplied.
* @retval ::NRF_ERROR_BUSY Client procedure already in progress.
*/
SVCALL(SD_BLE_GATTC_RELATIONSHIPS_DISCOVER, uint32_t, sd_ble_gattc_relationships_discover(uint16_t conn_handle, ble_gattc_handle_range_t const *p_handle_range));
/**@brief Initiate or continue a GATT Characteristic Discovery procedure.
*
* @details This function initiates or resumes a Characteristic discovery procedure. If the last Characteristic has not been reached,
* this must be called again with an updated handle range to continue the discovery.
*
* @note If any of the discovered characteristics have 128-bit UUIDs which are not present in the table provided to ble_vs_uuids_assign, a UUID structure with
* type @ref BLE_UUID_TYPE_UNKNOWN will be received in the corresponding event.
*
* @param[in] conn_handle The connection handle identifying the connection to perform this procedure on.
* @param[in] p_handle_range A pointer to the range of handles of the Service to perform this procedure on.
*
* @retval ::NRF_SUCCESS Successfully started or resumed the Characteristic Discovery procedure.
* @retval ::BLE_ERROR_INVALID_CONN_HANDLE Invalid Connection Handle.
* @retval ::NRF_ERROR_INVALID_STATE Invalid Connection State.
* @retval ::NRF_ERROR_INVALID_ADDR Invalid pointer supplied.
* @retval ::NRF_ERROR_BUSY Client procedure already in progress.
*/
SVCALL(SD_BLE_GATTC_CHARACTERISTICS_DISCOVER, uint32_t, sd_ble_gattc_characteristics_discover(uint16_t conn_handle, ble_gattc_handle_range_t const *p_handle_range));
/**@brief Initiate or continue a GATT Characteristic Descriptor Discovery procedure.
*
* @details This function initiates or resumes a Characteristic Descriptor discovery procedure. If the last Descriptor has not been reached,
* this must be called again with an updated handle range to continue the discovery.
*
* @param[in] conn_handle The connection handle identifying the connection to perform this procedure on.
* @param[in] p_handle_range A pointer to the range of handles of the Characteristic to perform this procedure on.
*
* @retval ::NRF_SUCCESS Successfully started or resumed the Descriptor Discovery procedure.
* @retval ::BLE_ERROR_INVALID_CONN_HANDLE Invalid Connection Handle.
* @retval ::NRF_ERROR_INVALID_STATE Invalid Connection State.
* @retval ::NRF_ERROR_INVALID_ADDR Invalid pointer supplied.
* @retval ::NRF_ERROR_BUSY Client procedure already in progress.
*/
SVCALL(SD_BLE_GATTC_DESCRIPTORS_DISCOVER, uint32_t, sd_ble_gattc_descriptors_discover(uint16_t conn_handle, ble_gattc_handle_range_t const *p_handle_range));
/**@brief Initiate or continue a GATT Read using Characteristic UUID procedure.
*
* @details This function initiates or resumes a Read using Characteristic UUID procedure. If the last Characteristic has not been reached,
* this must be called again with an updated handle range to continue the discovery.
*
* @param[in] conn_handle The connection handle identifying the connection to perform this procedure on.
* @param[in] p_uuid Pointer to a Characteristic value UUID to read.
* @param[in] p_handle_range A pointer to the range of handles to perform this procedure on.
*
* @retval ::NRF_SUCCESS Successfully started or resumed the Read using Characteristic UUID procedure.
* @retval ::BLE_ERROR_INVALID_CONN_HANDLE Invalid Connection Handle.
* @retval ::NRF_ERROR_INVALID_STATE Invalid Connection State.
* @retval ::NRF_ERROR_INVALID_ADDR Invalid pointer supplied.
* @retval ::NRF_ERROR_BUSY Client procedure already in progress.
*/
SVCALL(SD_BLE_GATTC_CHAR_VALUE_BY_UUID_READ, uint32_t, sd_ble_gattc_char_value_by_uuid_read(uint16_t conn_handle, ble_uuid_t const *p_uuid, ble_gattc_handle_range_t const *p_handle_range));
/**@brief Initiate or continue a GATT Read (Long) Characteristic or Descriptor procedure.
*
* @details This function initiates or resumes a GATT Read (Long) Characteristic or Descriptor procedure. If the Characteristic or Descriptor
* to be read is longer than ATT_MTU - 1, this function must be called multiple times with appropriate offset to read the
* complete value.
*
* @param[in] conn_handle The connection handle identifying the connection to perform this procedure on.
* @param[in] handle The handle of the attribute to be read.
* @param[in] offset Offset into the attribute value to be read.
*
* @retval ::NRF_SUCCESS Successfully started or resumed the Read (Long) procedure.
* @retval ::BLE_ERROR_INVALID_CONN_HANDLE Invalid Connection Handle.
* @retval ::NRF_ERROR_INVALID_STATE Invalid Connection State.
* @retval ::NRF_ERROR_INVALID_ADDR Invalid pointer supplied.
* @retval ::NRF_ERROR_BUSY Client procedure already in progress.
*/
SVCALL(SD_BLE_GATTC_READ, uint32_t, sd_ble_gattc_read(uint16_t conn_handle, uint16_t handle, uint16_t offset));
/**@brief Initiate a GATT Read Multiple Characteristic Values procedure.
*
* @details This function initiates a GATT Read Multiple Characteristic Values procedure.
*
* @param[in] conn_handle The connection handle identifying the connection to perform this procedure on.
* @param[in] p_handles A pointer to the handle(s) of the attribute(s) to be read.
* @param[in] handle_count The number of handles in p_handles.
*
* @retval ::NRF_SUCCESS Successfully started the Read Multiple Characteristic Values procedure.
* @retval ::BLE_ERROR_INVALID_CONN_HANDLE Invalid Connection Handle.
* @retval ::NRF_ERROR_INVALID_STATE Invalid Connection State.
* @retval ::NRF_ERROR_INVALID_ADDR Invalid pointer supplied.
* @retval ::NRF_ERROR_BUSY Client procedure already in progress.
*/
SVCALL(SD_BLE_GATTC_CHAR_VALUES_READ, uint32_t, sd_ble_gattc_char_values_read(uint16_t conn_handle, uint16_t const *p_handles, uint16_t handle_count));
/**@brief Perform a Write (Characteristic Value or Descriptor, with or without response, signed or not, long or reliable) procedure.
*
* @details This function can perform all write procedures described in GATT.
*
* @note It is important to note that a write without response will <b>consume an application buffer</b>, and will therefore
* generate a @ref BLE_EVT_TX_COMPLETE event when the packet has been transmitted. A write (with response) on the other hand will use the
* standard client internal buffer and thus will only generate a @ref BLE_GATTC_EVT_WRITE_RSP event as soon as the write response
* has been received from the peer. Please see the documentation of @ref sd_ble_tx_buffer_count_get for more details.
*
* @param[in] conn_handle The connection handle identifying the connection to perform this procedure on.
* @param[in] p_write_params A pointer to a write parameters structure.
*
* @retval ::NRF_SUCCESS Successfully started the Write procedure.
* @retval ::BLE_ERROR_INVALID_CONN_HANDLE Invalid Connection Handle.
* @retval ::NRF_ERROR_INVALID_STATE Invalid Connection State.
* @retval ::NRF_ERROR_INVALID_ADDR Invalid pointer supplied.
* @retval ::NRF_ERROR_INVALID_PARAM Invalid parameter(s) supplied.
* @retval ::NRF_ERROR_DATA_SIZE Invalid data size(s) supplied.
* @retval ::NRF_ERROR_BUSY Procedure already in progress.
* @retval ::BLE_ERROR_NO_TX_BUFFERS There are no available buffers left.
*/
SVCALL(SD_BLE_GATTC_WRITE, uint32_t, sd_ble_gattc_write(uint16_t conn_handle, ble_gattc_write_params_t const *p_write_params));
/**@brief Send a Handle Value Confirmation to the GATT Server.
*
* @param[in] conn_handle The connection handle identifying the connection to perform this procedure on.
* @param[in] handle The handle of the attribute in the indication.
*
* @retval ::NRF_SUCCESS Successfully queued the Handle Value Confirmation for transmission.
* @retval ::BLE_ERROR_INVALID_CONN_HANDLE Invalid Connection Handle.
* @retval ::NRF_ERROR_INVALID_STATE Invalid Connection State or no Indication pending to be confirmed.
* @retval ::BLE_ERROR_INVALID_ATTR_HANDLE Invalid attribute handle.
*/
SVCALL(SD_BLE_GATTC_HV_CONFIRM, uint32_t, sd_ble_gattc_hv_confirm(uint16_t conn_handle, uint16_t handle));
/** @} */
#endif /* BLE_GATTC_H__ */
/**
@}
@}
*/

View File

@ -0,0 +1,639 @@
/*
* Copyright (c) Nordic Semiconductor ASA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* 4. This software must only be used in a processor manufactured by Nordic
* Semiconductor ASA, or in a processor manufactured by a third party that
* is used in combination with a processor manufactured by Nordic Semiconductor.
*
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/**
@addtogroup BLE_GATTS Generic Attribute Profile (GATT) Server
@{
@brief Definitions and prototypes for the GATTS interface.
*/
#ifndef BLE_GATTS_H__
#define BLE_GATTS_H__
#include "ble_types.h"
#include "ble_ranges.h"
#include "ble_l2cap.h"
#include "ble_gap.h"
#include "ble_gatt.h"
#include "nrf_svc.h"
/** @addtogroup BLE_GATTS_ENUMERATIONS Enumerations
* @{ */
/**
* @brief GATTS API SVC numbers.
*/
enum BLE_GATTS_SVCS
{
SD_BLE_GATTS_SERVICE_ADD = BLE_GATTS_SVC_BASE, /**< Add a service. */
SD_BLE_GATTS_INCLUDE_ADD, /**< Add an included service. */
SD_BLE_GATTS_CHARACTERISTIC_ADD, /**< Add a characteristic. */
SD_BLE_GATTS_DESCRIPTOR_ADD, /**< Add a generic attribute. */
SD_BLE_GATTS_VALUE_SET, /**< Set an attribute value. */
SD_BLE_GATTS_VALUE_GET, /**< Get an attribute value. */
SD_BLE_GATTS_HVX, /**< Handle Value Notification or Indication. */
SD_BLE_GATTS_SERVICE_CHANGED, /**< Perform a Service Changed Indication to one or more peers. */
SD_BLE_GATTS_RW_AUTHORIZE_REPLY, /**< Reply to an authorization request for a read or write operation on one or more attributes. */
SD_BLE_GATTS_SYS_ATTR_SET, /**< Set the persistent system attributes for a connection. */
SD_BLE_GATTS_SYS_ATTR_GET, /**< Retrieve the persistent system attributes. */
};
/**
* @brief GATT Server Event IDs.
*/
enum BLE_GATTS_EVTS
{
BLE_GATTS_EVT_WRITE = BLE_GATTS_EVT_BASE, /**< Write operation performed. @ref ble_gatts_evt_write_t */
BLE_GATTS_EVT_RW_AUTHORIZE_REQUEST, /**< Read/Write Authorization request.@ref ble_gatts_evt_rw_authorize_request_t */
BLE_GATTS_EVT_SYS_ATTR_MISSING, /**< A persistent system attribute access is pending, awaiting a sd_ble_gatts_sys_attr_set(). @ref ble_gatts_evt_sys_attr_missing_t */
BLE_GATTS_EVT_HVC, /**< Handle Value Confirmation. @ref ble_gatts_evt_hvc_t */
BLE_GATTS_EVT_SC_CONFIRM, /**< Service Changed Confirmation. No additional event structure applies. */
BLE_GATTS_EVT_TIMEOUT /**< Timeout. @ref ble_gatts_evt_timeout_t */
};
/** @} */
/** @addtogroup BLE_GATTS_DEFINES Defines
* @{ */
/** @defgroup BLE_ERRORS_GATTS SVC return values specific to GATTS
* @{ */
#define BLE_ERROR_GATTS_INVALID_ATTR_TYPE (NRF_GATTS_ERR_BASE + 0x000) /**< Invalid attribute type. */
#define BLE_ERROR_GATTS_SYS_ATTR_MISSING (NRF_GATTS_ERR_BASE + 0x001) /**< System Attributes missing. */
/** @} */
/** @defgroup BLE_GATTS_ATTR_LENS_MAX Maximum attribute lengths
* @{ */
#define BLE_GATTS_FIX_ATTR_LEN_MAX (510) /**< Maximum length for fixed length Attribute Values. */
#define BLE_GATTS_VAR_ATTR_LEN_MAX (512) /**< Maximum length for variable length Attribute Values. */
/** @} */
/** @defgroup BLE_GATTS_SRVC_TYPES GATT Server Service Types
* @{ */
#define BLE_GATTS_SRVC_TYPE_INVALID 0x00 /**< Invalid Service Type. */
#define BLE_GATTS_SRVC_TYPE_PRIMARY 0x01 /**< Primary Service. */
#define BLE_GATTS_SRVC_TYPE_SECONDARY 0x02 /**< Secondary Type. */
/** @} */
/** @defgroup BLE_GATTS_ATTR_TYPES GATT Server Attribute Types
* @{ */
#define BLE_GATTS_ATTR_TYPE_INVALID 0x00 /**< Invalid Attribute Type. */
#define BLE_GATTS_ATTR_TYPE_PRIM_SRVC_DECL 0x01 /**< Primary Service Declaration. */
#define BLE_GATTS_ATTR_TYPE_SEC_SRVC_DECL 0x02 /**< Secondary Service Declaration. */
#define BLE_GATTS_ATTR_TYPE_INC_DECL 0x03 /**< Include Declaration. */
#define BLE_GATTS_ATTR_TYPE_CHAR_DECL 0x04 /**< Characteristic Declaration. */
#define BLE_GATTS_ATTR_TYPE_CHAR_VAL 0x05 /**< Characteristic Value. */
#define BLE_GATTS_ATTR_TYPE_DESC 0x06 /**< Descriptor. */
#define BLE_GATTS_ATTR_TYPE_OTHER 0x07 /**< Other, non-GATT specific type. */
/** @} */
/** @defgroup BLE_GATTS_OPS GATT Server Operations
* @{ */
#define BLE_GATTS_OP_INVALID 0x00 /**< Invalid Operation. */
#define BLE_GATTS_OP_WRITE_REQ 0x01 /**< Write Request. */
#define BLE_GATTS_OP_WRITE_CMD 0x02 /**< Write Command. */
#define BLE_GATTS_OP_SIGN_WRITE_CMD 0x03 /**< Signed Write Command. */
#define BLE_GATTS_OP_PREP_WRITE_REQ 0x04 /**< Prepare Write Request. */
#define BLE_GATTS_OP_EXEC_WRITE_REQ_CANCEL 0x05 /**< Execute Write Request: Cancel all prepared writes. */
#define BLE_GATTS_OP_EXEC_WRITE_REQ_NOW 0x06 /**< Execute Write Request: Immediately execute all prepared writes. */
/** @} */
/** @defgroup BLE_GATTS_VLOCS GATT Value Locations
* @{ */
#define BLE_GATTS_VLOC_INVALID 0x00 /**< Invalid Location. */
#define BLE_GATTS_VLOC_STACK 0x01 /**< Attribute Value is located in stack memory, no user memory is required. */
#define BLE_GATTS_VLOC_USER 0x02 /**< Attribute Value is located in user memory. This requires the user to maintain a valid buffer through the lifetime of the attribute, since the stack
will read and write directly to the memory using the pointer provided in the APIs. There are no alignment requirements for the buffer. */
/** @} */
/** @defgroup BLE_GATTS_AUTHORIZE_TYPES GATT Server Authorization Types
* @{ */
#define BLE_GATTS_AUTHORIZE_TYPE_INVALID 0x00 /**< Invalid Type. */
#define BLE_GATTS_AUTHORIZE_TYPE_READ 0x01 /**< Authorize a Read Operation. */
#define BLE_GATTS_AUTHORIZE_TYPE_WRITE 0x02 /**< Authorize a Write Request Operation. */
/** @} */
/** @defgroup BLE_GATTS_SYS_ATTR_FLAGS System Attribute Flags
* @{ */
#define BLE_GATTS_SYS_ATTR_FLAG_SYS_SRVCS (1 << 0) /**< Restrict system attributes to system services only. */
#define BLE_GATTS_SYS_ATTR_FLAG_USR_SRVCS (1 << 1) /**< Restrict system attributes to user services only. */
/** @} */
/** @defgroup BLE_GATTS_ATTR_TAB_SIZE Attribute Table size
* @{
*/
#define BLE_GATTS_ATTR_TAB_SIZE_MIN 216 /**< Minimum Attribute Table size */
#define BLE_GATTS_ATTR_TAB_SIZE_DEFAULT 0x0000 /**< Default Attribute Table size (0x700 bytes for this version of the SoftDevice). */
/** @} */
/** @} */
/** @addtogroup BLE_GATTS_STRUCTURES Structures
* @{ */
/**
* @brief BLE GATTS init options
*/
typedef struct
{
uint8_t service_changed:1; /**< Include the Service Changed characteristic in the Attribute Table. */
uint32_t attr_tab_size; /**< Attribute Table size in bytes. The size must be a multiple of 4. @ref BLE_GATTS_ATTR_TAB_SIZE_DEFAULT is used to set the default size. */
} ble_gatts_enable_params_t;
/**@brief Attribute metadata. */
typedef struct
{
ble_gap_conn_sec_mode_t read_perm; /**< Read permissions. */
ble_gap_conn_sec_mode_t write_perm; /**< Write permissions. */
uint8_t vlen :1; /**< Variable length attribute. */
uint8_t vloc :2; /**< Value location, see @ref BLE_GATTS_VLOCS.*/
uint8_t rd_auth :1; /**< Read authorization and value will be requested from the application on every read operation. */
uint8_t wr_auth :1; /**< Write authorization will be requested from the application on every Write Request operation (but not Write Command). */
} ble_gatts_attr_md_t;
/**@brief GATT Attribute. */
typedef struct
{
ble_uuid_t *p_uuid; /**< Pointer to the attribute UUID. */
ble_gatts_attr_md_t *p_attr_md; /**< Pointer to the attribute metadata structure. */
uint16_t init_len; /**< Initial attribute value length in bytes. */
uint16_t init_offs; /**< Initial attribute value offset in bytes. If different from zero, the first init_offs bytes of the attribute value will be left uninitialized. */
uint16_t max_len; /**< Maximum attribute value length in bytes, see @ref BLE_GATTS_ATTR_LENS_MAX for maximum values. */
uint8_t* p_value; /**< Pointer to the attribute data. Please note that if the @ref BLE_GATTS_VLOC_USER value location is selected in the attribute metadata, this will have to point to a buffer
that remains valid through the lifetime of the attribute. This excludes usage of automatic variables that may go out of scope or any other temporary location.
The stack may access that memory directly without the application's knowledge. For writable characteristics, this value must not be a location in flash memory.*/
} ble_gatts_attr_t;
/**@brief GATT Attribute Value. */
typedef struct
{
uint16_t len; /**< Length in bytes to be written or read. Length in bytes written or read after successful return.*/
uint16_t offset; /**< Attribute value offset. */
uint8_t *p_value; /**< Pointer to where value is stored or will be stored.
If value is stored in user memory, only the attribute length is updated when p_value == NULL.
Set to NULL when reading to obtain the complete length of the attribute value */
} ble_gatts_value_t;
/**@brief GATT Attribute Context. */
typedef struct
{
ble_uuid_t srvc_uuid; /**< Service UUID. */
ble_uuid_t char_uuid; /**< Characteristic UUID if applicable (BLE_UUID_TYPE_UNKNOWN otherwise). */
ble_uuid_t desc_uuid; /**< Descriptor UUID if applicable (BLE_UUID_TYPE_UNKNOWN otherwise). */
uint16_t srvc_handle; /**< Service Handle. */
uint16_t value_handle; /**< Characteristic Value Handle if applicable (BLE_GATT_HANDLE_INVALID otherwise). */
uint8_t type; /**< Attribute Type, see @ref BLE_GATTS_ATTR_TYPES. */
} ble_gatts_attr_context_t;
/**@brief GATT Characteristic Presentation Format. */
typedef struct
{
uint8_t format; /**< Format of the value, see @ref BLE_GATT_CPF_FORMATS. */
int8_t exponent; /**< Exponent for integer data types. */
uint16_t unit; /**< Unit from Bluetooth Assigned Numbers. */
uint8_t name_space; /**< Namespace from Bluetooth Assigned Numbers, see @ref BLE_GATT_CPF_NAMESPACES. */
uint16_t desc; /**< Namespace description from Bluetooth Assigned Numbers, see @ref BLE_GATT_CPF_NAMESPACES. */
} ble_gatts_char_pf_t;
/**@brief GATT Characteristic metadata. */
typedef struct
{
ble_gatt_char_props_t char_props; /**< Characteristic Properties. */
ble_gatt_char_ext_props_t char_ext_props; /**< Characteristic Extended Properties. */
uint8_t *p_char_user_desc; /**< Pointer to a UTF-8 encoded string (non-NULL terminated), NULL if the descriptor is not required. */
uint16_t char_user_desc_max_size; /**< The maximum size in bytes of the user description descriptor. */
uint16_t char_user_desc_size; /**< The size of the user description, must be smaller or equal to char_user_desc_max_size. */
ble_gatts_char_pf_t* p_char_pf; /**< Pointer to a presentation format structure or NULL if the CPF descriptor is not required. */
ble_gatts_attr_md_t* p_user_desc_md; /**< Attribute metadata for the User Description descriptor, or NULL for default values. */
ble_gatts_attr_md_t* p_cccd_md; /**< Attribute metadata for the Client Characteristic Configuration Descriptor, or NULL for default values. */
ble_gatts_attr_md_t* p_sccd_md; /**< Attribute metadata for the Server Characteristic Configuration Descriptor, or NULL for default values. */
} ble_gatts_char_md_t;
/**@brief GATT Characteristic Definition Handles. */
typedef struct
{
uint16_t value_handle; /**< Handle to the characteristic value. */
uint16_t user_desc_handle; /**< Handle to the User Description descriptor, or @ref BLE_GATT_HANDLE_INVALID if not present. */
uint16_t cccd_handle; /**< Handle to the Client Characteristic Configuration Descriptor, or @ref BLE_GATT_HANDLE_INVALID if not present. */
uint16_t sccd_handle; /**< Handle to the Server Characteristic Configuration Descriptor, or @ref BLE_GATT_HANDLE_INVALID if not present. */
} ble_gatts_char_handles_t;
/**@brief GATT HVx parameters. */
typedef struct
{
uint16_t handle; /**< Characteristic Value Handle. */
uint8_t type; /**< Indication or Notification, see @ref BLE_GATT_HVX_TYPES. */
uint16_t offset; /**< Offset within the attribute value. */
uint16_t *p_len; /**< Length in bytes to be written, length in bytes written after successful return. */
uint8_t *p_data; /**< Actual data content, use NULL to use the current attribute value. */
} ble_gatts_hvx_params_t;
/**@brief GATT Read Authorization parameters. */
typedef struct
{
uint16_t gatt_status; /**< GATT status code for the operation, see @ref BLE_GATT_STATUS_CODES. */
uint8_t update : 1; /**< If set, data supplied in p_data will be used in the ATT response. */
uint16_t offset; /**< Offset of the attribute value being updated. */
uint16_t len; /**< Length in bytes of the value in p_data pointer, see @ref BLE_GATTS_ATTR_LENS_MAX. */
uint8_t *p_data; /**< Pointer to new value used to update the attribute value. */
} ble_gatts_read_authorize_params_t;
/**@brief GATT Write Authorization parameters. */
typedef struct
{
uint16_t gatt_status; /**< GATT status code for the operation, see @ref BLE_GATT_STATUS_CODES. */
} ble_gatts_write_authorize_params_t;
/**@brief GATT Read or Write Authorize Reply parameters. */
typedef struct
{
uint8_t type; /**< Type of authorize operation, see @ref BLE_GATTS_AUTHORIZE_TYPES. */
union {
ble_gatts_read_authorize_params_t read; /**< Read authorization parameters. */
ble_gatts_write_authorize_params_t write; /**< Write authorization parameters. */
} params; /**< Reply Parameters. */
} ble_gatts_rw_authorize_reply_params_t;
/**@brief Event structure for @ref BLE_GATTS_EVT_WRITE. */
typedef struct
{
uint16_t handle; /**< Attribute Handle. */
uint8_t op; /**< Type of write operation, see @ref BLE_GATTS_OPS. */
ble_gatts_attr_context_t context; /**< Attribute Context. */
uint16_t offset; /**< Offset for the write operation. */
uint16_t len; /**< Length of the received data. */
uint8_t data[1]; /**< Received data, variable length. */
} ble_gatts_evt_write_t;
/**@brief Event substructure for authorized read requests, see @ref ble_gatts_evt_rw_authorize_request_t. */
typedef struct
{
uint16_t handle; /**< Attribute Handle. */
ble_gatts_attr_context_t context; /**< Attribute Context. */
uint16_t offset; /**< Offset for the read operation. */
} ble_gatts_evt_read_t;
/**@brief Event structure for @ref BLE_GATTS_EVT_RW_AUTHORIZE_REQUEST. */
typedef struct
{
uint8_t type; /**< Type of authorize operation, see @ref BLE_GATTS_AUTHORIZE_TYPES. */
union {
ble_gatts_evt_read_t read; /**< Attribute Read Parameters. */
ble_gatts_evt_write_t write; /**< Attribute Write Parameters. */
} request; /**< Request Parameters. */
} ble_gatts_evt_rw_authorize_request_t;
/**@brief Event structure for @ref BLE_GATTS_EVT_SYS_ATTR_MISSING. */
typedef struct
{
uint8_t hint; /**< Hint (currently unused). */
} ble_gatts_evt_sys_attr_missing_t;
/**@brief Event structure for @ref BLE_GATTS_EVT_HVC. */
typedef struct
{
uint16_t handle; /**< Attribute Handle. */
} ble_gatts_evt_hvc_t;
/**@brief Event structure for @ref BLE_GATTS_EVT_TIMEOUT. */
typedef struct
{
uint8_t src; /**< Timeout source, see @ref BLE_GATT_TIMEOUT_SOURCES. */
} ble_gatts_evt_timeout_t;
/**@brief GATT Server event callback event structure. */
typedef struct
{
uint16_t conn_handle; /**< Connection Handle on which the event occurred. */
union
{
ble_gatts_evt_write_t write; /**< Write Event Parameters. */
ble_gatts_evt_rw_authorize_request_t authorize_request; /**< Read or Write Authorize Request Parameters. */
ble_gatts_evt_sys_attr_missing_t sys_attr_missing; /**< System attributes missing. */
ble_gatts_evt_hvc_t hvc; /**< Handle Value Confirmation Event Parameters. */
ble_gatts_evt_timeout_t timeout; /**< Timeout Event. */
} params; /**< Event Parameters. */
} ble_gatts_evt_t;
/** @} */
/** @addtogroup BLE_GATTS_FUNCTIONS Functions
* @{ */
/**@brief Add a service declaration to the Attribute Table.
*
* @param[in] type Toggles between primary and secondary services, see @ref BLE_GATTS_SRVC_TYPES.
* @param[in] p_uuid Pointer to service UUID.
* @param[out] p_handle Pointer to a 16-bit word where the assigned handle will be stored.
*
* @note Secondary Services are only relevant in the context of the entity that references them, it is therefore forbidden to
* add a secondary service declaration that is not referenced by another service later in the Attribute Table.
*
* @retval ::NRF_SUCCESS Successfully added a service declaration.
* @retval ::NRF_ERROR_INVALID_ADDR Invalid pointer supplied.
* @retval ::NRF_ERROR_INVALID_PARAM Invalid parameter(s) supplied, Vendor Specific UUIDs need to be present in the table.
* @retval ::NRF_ERROR_FORBIDDEN Forbidden value supplied, certain UUIDs are reserved for the stack.
* @retval ::NRF_ERROR_NO_MEM Not enough memory to complete operation.
*/
SVCALL(SD_BLE_GATTS_SERVICE_ADD, uint32_t, sd_ble_gatts_service_add(uint8_t type, ble_uuid_t const *p_uuid, uint16_t *p_handle));
/**@brief Add an include declaration to the Attribute Table.
*
* @note It is currently only possible to add an include declaration to the last added service (i.e. only sequential population is supported at this time).
*
* @note The included service must already be present in the Attribute Table prior to this call.
*
* @param[in] service_handle Handle of the service where the included service is to be placed, if @ref BLE_GATT_HANDLE_INVALID is used, it will be placed sequentially.
* @param[in] inc_srvc_handle Handle of the included service.
* @param[out] p_include_handle Pointer to a 16-bit word where the assigned handle will be stored.
*
* @retval ::NRF_SUCCESS Successfully added an include declaration.
* @retval ::NRF_ERROR_INVALID_ADDR Invalid pointer supplied.
* @retval ::NRF_ERROR_INVALID_PARAM Invalid parameter(s) supplied, handle values need to match previously added services.
* @retval ::NRF_ERROR_INVALID_STATE Invalid state to perform operation.
* @retval ::NRF_ERROR_FORBIDDEN Forbidden value supplied, self inclusions are not allowed.
* @retval ::NRF_ERROR_NO_MEM Not enough memory to complete operation.
* @retval ::NRF_ERROR_NOT_FOUND Attribute not found.
*/
SVCALL(SD_BLE_GATTS_INCLUDE_ADD, uint32_t, sd_ble_gatts_include_add(uint16_t service_handle, uint16_t inc_srvc_handle, uint16_t *p_include_handle));
/**@brief Add a characteristic declaration, a characteristic value declaration and optional characteristic descriptor declarations to the Attribute Table.
*
* @note It is currently only possible to add a characteristic to the last added service (i.e. only sequential population is supported at this time).
*
* @note Several restrictions apply to the parameters, such as matching permissions between the user description descriptor and the writeable auxiliaries bits,
* readable (no security) and writeable (selectable) CCCDs and SCCDs and valid presentation format values.
*
* @note If no metadata is provided for the optional descriptors, their permissions will be derived from the characteristic permissions.
*
* @param[in] service_handle Handle of the service where the characteristic is to be placed, if @ref BLE_GATT_HANDLE_INVALID is used, it will be placed sequentially.
* @param[in] p_char_md Characteristic metadata.
* @param[in] p_attr_char_value Pointer to the attribute structure corresponding to the characteristic value.
* @param[out] p_handles Pointer to the structure where the assigned handles will be stored.
*
* @retval ::NRF_SUCCESS Successfully added a characteristic.
* @retval ::NRF_ERROR_INVALID_ADDR Invalid pointer supplied.
* @retval ::NRF_ERROR_INVALID_PARAM Invalid parameter(s) supplied, service handle, Vendor Specific UUIDs, lengths, and permissions need to adhere to the constraints.
* @retval ::NRF_ERROR_INVALID_STATE Invalid state to perform operation, a service context is required.
* @retval ::NRF_ERROR_FORBIDDEN Forbidden value supplied, certain UUIDs are reserved for the stack.
* @retval ::NRF_ERROR_NO_MEM Not enough memory to complete operation.
* @retval ::NRF_ERROR_DATA_SIZE Invalid data size(s) supplied, attribute lengths are restricted by @ref BLE_GATTS_ATTR_LENS_MAX.
*/
SVCALL(SD_BLE_GATTS_CHARACTERISTIC_ADD, uint32_t, sd_ble_gatts_characteristic_add(uint16_t service_handle, ble_gatts_char_md_t const *p_char_md, ble_gatts_attr_t const *p_attr_char_value, ble_gatts_char_handles_t *p_handles));
/**@brief Add a descriptor to the Attribute Table.
*
* @note It is currently only possible to add a descriptor to the last added characteristic (i.e. only sequential population is supported at this time).
*
* @param[in] char_handle Handle of the characteristic where the descriptor is to be placed, if @ref BLE_GATT_HANDLE_INVALID is used, it will be placed sequentially.
* @param[in] p_attr Pointer to the attribute structure.
* @param[out] p_handle Pointer to a 16-bit word where the assigned handle will be stored.
*
* @retval ::NRF_SUCCESS Successfully added a descriptor.
* @retval ::NRF_ERROR_INVALID_ADDR Invalid pointer supplied.
* @retval ::NRF_ERROR_INVALID_PARAM Invalid parameter(s) supplied, characteristic handle, Vendor Specific UUIDs, lengths, and permissions need to adhere to the constraints.
* @retval ::NRF_ERROR_INVALID_STATE Invalid state to perform operation, a characteristic context is required.
* @retval ::NRF_ERROR_FORBIDDEN Forbidden value supplied, certain UUIDs are reserved for the stack.
* @retval ::NRF_ERROR_NO_MEM Not enough memory to complete operation.
* @retval ::NRF_ERROR_DATA_SIZE Invalid data size(s) supplied, attribute lengths are restricted by @ref BLE_GATTS_ATTR_LENS_MAX.
*/
SVCALL(SD_BLE_GATTS_DESCRIPTOR_ADD, uint32_t, sd_ble_gatts_descriptor_add(uint16_t char_handle, ble_gatts_attr_t const *p_attr, uint16_t *p_handle));
/**@brief Set the value of a given attribute.
*
* @param[in] conn_handle Connection handle. If the value does not belong to a system attribute then @ref BLE_CONN_HANDLE_INVALID can be used.
* @param[in] handle Attribute handle.
* @param[in,out] p_value Attribute value information.
*
* @note Values other than system attributes can be set at any time, regardless of wheter any active connections exist.
*
* @retval ::NRF_SUCCESS Successfully set the value of the attribute.
* @retval ::NRF_ERROR_INVALID_ADDR Invalid pointer supplied.
* @retval ::NRF_ERROR_INVALID_PARAM Invalid parameter(s) supplied.
* @retval ::NRF_ERROR_NOT_FOUND Attribute not found.
* @retval ::NRF_ERROR_FORBIDDEN Forbidden handle supplied, certain attributes are not modifiable by the application.
* @retval ::NRF_ERROR_DATA_SIZE Invalid data size(s) supplied, attribute lengths are restricted by @ref BLE_GATTS_ATTR_LENS_MAX.
* @retval ::BLE_ERROR_INVALID_CONN_HANDLE Invalid connection handle supplied.
* @retval ::BLE_ERROR_GATTS_INVALID_ATTR_TYPE @ref BLE_CONN_HANDLE_INVALID supplied on a system attribute.
*/
SVCALL(SD_BLE_GATTS_VALUE_SET, uint32_t, sd_ble_gatts_value_set(uint16_t conn_handle, uint16_t handle, ble_gatts_value_t *p_value));
/**@brief Get the value of a given attribute.
*
* @param[in] conn_handle Connection handle. If the value does not belong to a system attribute then @ref BLE_CONN_HANDLE_INVALID can be used.
* @param[in] handle Attribute handle.
* @param[in,out] p_value Attribute value information.
*
* @note If the attribute value is longer than the size of the supplied buffer,
* p_len will return the total attribute value length (excluding offset),
* and not the number of bytes actually returned in p_data.
* The application may use this information to allocate a suitable buffer size.
*
* @note When retrieving system attribute values with this function, the connection handle
* may refer to an already disconnected connection. Refer to the documentation of
* @ref sd_ble_gatts_sys_attr_get for further information.
*
* @retval ::NRF_SUCCESS Successfully retrieved the value of the attribute.
* @retval ::NRF_ERROR_INVALID_ADDR Invalid pointer supplied.
* @retval ::NRF_ERROR_NOT_FOUND Attribute not found.
* @retval ::BLE_ERROR_INVALID_CONN_HANDLE Invalid connection handle supplied.
* @retval ::BLE_ERROR_GATTS_INVALID_ATTR_TYPE @ref BLE_CONN_HANDLE_INVALID supplied on a system attribute.
*/
SVCALL(SD_BLE_GATTS_VALUE_GET, uint32_t, sd_ble_gatts_value_get(uint16_t conn_handle, uint16_t handle, ble_gatts_value_t *p_value));
/**@brief Notify or Indicate an attribute value.
*
* @details This function checks for the relevant Client Characteristic Configuration descriptor value to verify that the relevant operation
* (notification or indication) has been enabled by the client. It is also able to update the attribute value before issuing the PDU, so that
* the application can atomically perform a value update and a server initiated transaction with a single API call.
* If the application chooses to indicate an attribute value, a @ref BLE_GATTS_EVT_HVC event will be issued as soon as the confirmation arrives from
* the peer.
*
* @note The local attribute value may be updated even if an outgoing packet is not sent to the peer due to an error during execution.
* When receiveing the error codes @ref NRF_ERROR_INVALID_STATE, @ref NRF_ERROR_BUSY, @ref BLE_ERROR_GATTS_SYS_ATTR_MISSING and
* @ref BLE_ERROR_NO_TX_BUFFERS the Attribute Table has been updated.
* The caller can check whether the value has been updated by looking at the contents of *(p_hvx_params->p_len).
*
* @note It is important to note that a notification will <b>consume an application buffer</b>, and will therefore
* generate a @ref BLE_EVT_TX_COMPLETE event when the packet has been transmitted. An indication on the other hand will use the
* standard server internal buffer and thus will only generate a @ref BLE_GATTS_EVT_HVC event as soon as the confirmation
* has been received from the peer. Please see the documentation of @ref sd_ble_tx_buffer_count_get for more details.
*
* @param[in] conn_handle Connection handle.
* @param[in] p_hvx_params Pointer to an HVx parameters structure. If the p_data member contains a non-NULL pointer the attribute value will be updated with
* the contents pointed by it before sending the notification or indication.
*
* @retval ::NRF_SUCCESS Successfully queued a notification or indication for transmission, and optionally updated the attribute value.
* @retval ::BLE_ERROR_INVALID_CONN_HANDLE Invalid Connection Handle.
* @retval ::NRF_ERROR_INVALID_STATE Invalid Connection State or notifications and/or indications not enabled in the CCCD.
* @retval ::NRF_ERROR_INVALID_ADDR Invalid pointer supplied.
* @retval ::NRF_ERROR_INVALID_PARAM Invalid parameter(s) supplied.
* @retval ::BLE_ERROR_INVALID_ATTR_HANDLE Invalid attribute handle(s) supplied. Only attributes added directly by the application are available to notify and indicate.
* @retval ::BLE_ERROR_GATTS_INVALID_ATTR_TYPE Invalid attribute type(s) supplied, only characteristic values may be notified and indicated.
* @retval ::NRF_ERROR_NOT_FOUND Attribute not found.
* @retval ::NRF_ERROR_DATA_SIZE Invalid data size(s) supplied.
* @retval ::NRF_ERROR_BUSY Procedure already in progress.
* @retval ::BLE_ERROR_GATTS_SYS_ATTR_MISSING System attributes missing, use @ref sd_ble_gatts_sys_attr_set to set them to a known value.
* @retval ::BLE_ERROR_NO_TX_BUFFERS There are no available buffers to send the data, applies only to notifications.
*/
SVCALL(SD_BLE_GATTS_HVX, uint32_t, sd_ble_gatts_hvx(uint16_t conn_handle, ble_gatts_hvx_params_t const *p_hvx_params));
/**@brief Indicate the Service Changed attribute value.
*
* @details This call will send a Handle Value Indication to one or more peers connected to inform them that the Attribute
* Table layout has changed. As soon as the peer has confirmed the indication, a @ref BLE_GATTS_EVT_SC_CONFIRM event will
* be issued.
*
* @note Some of the restrictions and limitations that apply to @ref sd_ble_gatts_hvx also apply here.
*
* @param[in] conn_handle Connection handle.
* @param[in] start_handle Start of affected attribute handle range.
* @param[in] end_handle End of affected attribute handle range.
*
* @retval ::NRF_SUCCESS Successfully queued the Service Changed indication for transmission.
* @retval ::BLE_ERROR_INVALID_CONN_HANDLE Invalid Connection Handle.
* @retval ::NRF_ERROR_INVALID_STATE Invalid Connection State or notifications and/or indications not enabled in the CCCD.
* @retval ::NRF_ERROR_INVALID_PARAM Invalid parameter(s) supplied.
* @retval ::BLE_ERROR_INVALID_ATTR_HANDLE Invalid attribute handle(s) supplied, handles must be in the range populated by the application.
* @retval ::NRF_ERROR_INVALID_STATE Invalid state to perform operation, notifications or indications must be enabled in the CCCD.
* @retval ::NRF_ERROR_BUSY Procedure already in progress.
* @retval ::BLE_ERROR_GATTS_SYS_ATTR_MISSING System attributes missing, use @ref sd_ble_gatts_sys_attr_set to set them to a known value.
*/
SVCALL(SD_BLE_GATTS_SERVICE_CHANGED, uint32_t, sd_ble_gatts_service_changed(uint16_t conn_handle, uint16_t start_handle, uint16_t end_handle));
/**@brief Respond to a Read/Write authorization request.
*
* @note This call should only be used as a response to a @ref BLE_GATTS_EVT_RW_AUTHORIZE_REQUEST event issued to the application.
*
* @param[in] conn_handle Connection handle.
* @param[in] p_rw_authorize_reply_params Pointer to a structure with the attribute provided by the application.
*
* @retval ::NRF_SUCCESS Successfully queued a response to the peer, and in the case of a write operation, Attribute Table updated.
* @retval ::BLE_ERROR_INVALID_CONN_HANDLE Invalid Connection Handle.
* @retval ::NRF_ERROR_INVALID_STATE Invalid Connection State or no authorization request pending.
* @retval ::NRF_ERROR_INVALID_PARAM Authorization op invalid,
* or for Read Authorization reply: requested handles not replied with,
* or for Write Authorization reply: handle supplied does not match requested handle.
* @retval ::NRF_ERROR_BUSY The stack is busy. Retry at later time.
*/
SVCALL(SD_BLE_GATTS_RW_AUTHORIZE_REPLY, uint32_t, sd_ble_gatts_rw_authorize_reply(uint16_t conn_handle, ble_gatts_rw_authorize_reply_params_t const *p_rw_authorize_reply_params));
/**@brief Update persistent system attribute information.
*
* @details Supply information about persistent system attributes to the stack,
* previously obtained using @ref sd_ble_gatts_sys_attr_get.
* This call is only allowed for active connections, and is usually
* made immediately after a connection is established with an known bonded device,
* often as a response to a @ref BLE_GATTS_EVT_SYS_ATTR_MISSING.
*
* p_sysattrs may point directly to the application's stored copy of the system attributes
* obtained using @ref sd_ble_gatts_sys_attr_get.
* If the pointer is NULL, the system attribute info is initialized, assuming that
* the application does not have any previously saved system attribute data for this device.
*
* @note The state of persistent system attributes is reset upon connection establishment and then remembered for its duration.
*
* @note If this call returns with an error code different from @ref NRF_SUCCESS, the storage of persistent system attributes may have been completed only partially.
* This means that the state of the attribute table is undefined, and the application should either provide a new set of attributes using this same call or
* reset the SoftDevice to return to a known state.
*
* @note When the @ref BLE_GATTS_SYS_ATTR_FLAG_SYS_SRVCS is used with this function, only the system attributes included in system services will be modified.
* @note When the @ref BLE_GATTS_SYS_ATTR_FLAG_USR_SRVCS is used with this function, only the system attributes included in user services will be modified.
*
* @param[in] conn_handle Connection handle.
* @param[in] p_sys_attr_data Pointer to a saved copy of system attributes supplied to the stack, or NULL.
* @param[in] len Size of data pointed by p_sys_attr_data, in octets.
* @param[in] flags Optional additional flags, see @ref BLE_GATTS_SYS_ATTR_FLAGS
*
* @retval ::NRF_SUCCESS Successfully set the system attribute information.
* @retval ::BLE_ERROR_INVALID_CONN_HANDLE Invalid Connection Handle.
* @retval ::NRF_ERROR_INVALID_STATE Invalid Connection State.
* @retval ::NRF_ERROR_INVALID_DATA Invalid data supplied, the data should be exactly the same as retrieved with @ref sd_ble_gatts_sys_attr_get.
* @retval ::NRF_ERROR_NO_MEM Not enough memory to complete operation.
* @retval ::NRF_ERROR_BUSY The stack is busy. Retry at later time.
*/
SVCALL(SD_BLE_GATTS_SYS_ATTR_SET, uint32_t, sd_ble_gatts_sys_attr_set(uint16_t conn_handle, uint8_t const *p_sys_attr_data, uint16_t len, uint32_t flags));
/**@brief Retrieve persistent system attribute information from the stack.
*
* @details This call is used to retrieve information about values to be stored perisistently by the application
* during the lifetime of a connection or after it has been terminated. When a new connection is established with the same bonded device,
* the system attribute information retrieved with this function should be restored using using @ref sd_ble_gatts_sys_attr_set.
* If retrieved after disconnection, the data should be read before a new connection established. The connection handle for
* the previous, now disconnected, connection will remain valid until a new one is created to allow this API call to refer to it.
* Connection handles belonging to active connections can be used as well, but care should be taken since the system attributes
* may be written to at any time by the peer during a connection's lifetime.
*
* @note When the @ref BLE_GATTS_SYS_ATTR_FLAG_SYS_SRVCS is used with this function, only the system attributes included in system services will be returned.
* @note When the @ref BLE_GATTS_SYS_ATTR_FLAG_USR_SRVCS is used with this function, only the system attributes included in user services will be returned.
*
* @param[in] conn_handle Connection handle of the recently terminated connection.
* @param[out] p_sys_attr_data Pointer to a buffer where updated information about system attributes will be filled in. NULL can be provided to
* obtain the length of the data
* @param[in,out] p_len Size of application buffer if p_sys_attr_data is not NULL. Unconditially updated to actual length of system attribute data.
* @param[in] flags Optional additional flags, see @ref BLE_GATTS_SYS_ATTR_FLAGS
*
* @retval ::NRF_SUCCESS Successfully retrieved the system attribute information.
* @retval ::BLE_ERROR_INVALID_CONN_HANDLE Invalid Connection Handle.
* @retval ::NRF_ERROR_INVALID_ADDR Invalid pointer supplied.
* @retval ::NRF_ERROR_DATA_SIZE The system attribute information did not fit into the provided buffer.
* @retval ::NRF_ERROR_NOT_FOUND No system attributes found.
*/
SVCALL(SD_BLE_GATTS_SYS_ATTR_GET, uint32_t, sd_ble_gatts_sys_attr_get(uint16_t conn_handle, uint8_t *p_sys_attr_data, uint16_t *p_len, uint32_t flags));
/** @} */
#endif // BLE_GATTS_H__
/**
@}
*/

View File

@ -0,0 +1,125 @@
/*
* Copyright (c) Nordic Semiconductor ASA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* 4. This software must only be used in a processor manufactured by Nordic
* Semiconductor ASA, or in a processor manufactured by a third party that
* is used in combination with a processor manufactured by Nordic Semiconductor.
*
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/**
@addtogroup BLE_COMMON
@{
*/
#ifndef BLE_HCI_H__
#define BLE_HCI_H__
/** @defgroup BLE_HCI_STATUS_CODES Bluetooth status codes
* @{ */
#define BLE_HCI_STATUS_CODE_SUCCESS 0x00 /**< Success. */
#define BLE_HCI_STATUS_CODE_UNKNOWN_BTLE_COMMAND 0x01 /**< Unknown BLE Command. */
#define BLE_HCI_STATUS_CODE_UNKNOWN_CONNECTION_IDENTIFIER 0x02 /**< Unknown Connection Identifier. */
/*0x03 Hardware Failure
0x04 Page Timeout
*/
#define BLE_HCI_AUTHENTICATION_FAILURE 0x05 /**< Authentication Failure. */
#define BLE_HCI_STATUS_CODE_PIN_OR_KEY_MISSING 0x06 /**< Pin or Key missing. */
#define BLE_HCI_MEMORY_CAPACITY_EXCEEDED 0x07 /**< Memory Capacity Exceeded. */
#define BLE_HCI_CONNECTION_TIMEOUT 0x08 /**< Connection Timeout. */
/*0x09 Connection Limit Exceeded
0x0A Synchronous Connection Limit To A Device Exceeded
0x0B ACL Connection Already Exists*/
#define BLE_HCI_STATUS_CODE_COMMAND_DISALLOWED 0x0C /**< Command Disallowed. */
/*0x0D Connection Rejected due to Limited Resources
0x0E Connection Rejected Due To Security Reasons
0x0F Connection Rejected due to Unacceptable BD_ADDR
0x10 Connection Accept Timeout Exceeded
0x11 Unsupported Feature or Parameter Value*/
#define BLE_HCI_STATUS_CODE_INVALID_BTLE_COMMAND_PARAMETERS 0x12 /**< Invalid BLE Command Parameters. */
#define BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION 0x13 /**< Remote User Terminated Connection. */
#define BLE_HCI_REMOTE_DEV_TERMINATION_DUE_TO_LOW_RESOURCES 0x14 /**< Remote Device Terminated Connection due to low resources.*/
#define BLE_HCI_REMOTE_DEV_TERMINATION_DUE_TO_POWER_OFF 0x15 /**< Remote Device Terminated Connection due to power off. */
#define BLE_HCI_LOCAL_HOST_TERMINATED_CONNECTION 0x16 /**< Local Host Terminated Connection. */
/*
0x17 Repeated Attempts
0x18 Pairing Not Allowed
0x19 Unknown LMP PDU
*/
#define BLE_HCI_UNSUPPORTED_REMOTE_FEATURE 0x1A /**< Unsupported Remote Feature. */
/*
0x1B SCO Offset Rejected
0x1C SCO Interval Rejected
0x1D SCO Air Mode Rejected*/
#define BLE_HCI_STATUS_CODE_INVALID_LMP_PARAMETERS 0x1E /**< Invalid LMP Parameters. */
#define BLE_HCI_STATUS_CODE_UNSPECIFIED_ERROR 0x1F /**< Unspecified Error. */
/*0x20 Unsupported LMP Parameter Value
0x21 Role Change Not Allowed
*/
#define BLE_HCI_STATUS_CODE_LMP_RESPONSE_TIMEOUT 0x22 /**< LMP Response Timeout. */
/*0x23 LMP Error Transaction Collision*/
#define BLE_HCI_STATUS_CODE_LMP_PDU_NOT_ALLOWED 0x24 /**< LMP PDU Not Allowed. */
/*0x25 Encryption Mode Not Acceptable
0x26 Link Key Can Not be Changed
0x27 Requested QoS Not Supported
*/
#define BLE_HCI_INSTANT_PASSED 0x28 /**< Instant Passed. */
#define BLE_HCI_PAIRING_WITH_UNIT_KEY_UNSUPPORTED 0x29 /**< Pairing with Unit Key Unsupported. */
#define BLE_HCI_DIFFERENT_TRANSACTION_COLLISION 0x2A /**< Different Transaction Collision. */
/*
0x2B Reserved
0x2C QoS Unacceptable Parameter
0x2D QoS Rejected
0x2E Channel Classification Not Supported
0x2F Insufficient Security
0x30 Parameter Out Of Mandatory Range
0x31 Reserved
0x32 Role Switch Pending
0x33 Reserved
0x34 Reserved Slot Violation
0x35 Role Switch Failed
0x36 Extended Inquiry Response Too Large
0x37 Secure Simple Pairing Not Supported By Host.
0x38 Host Busy - Pairing
0x39 Connection Rejected due to No Suitable Channel Found*/
#define BLE_HCI_CONTROLLER_BUSY 0x3A /**< Controller Busy. */
#define BLE_HCI_CONN_INTERVAL_UNACCEPTABLE 0x3B /**< Connection Interval Unacceptable. */
#define BLE_HCI_DIRECTED_ADVERTISER_TIMEOUT 0x3C /**< Directed Adverisement Timeout. */
#define BLE_HCI_CONN_TERMINATED_DUE_TO_MIC_FAILURE 0x3D /**< Connection Terminated due to MIC Failure. */
#define BLE_HCI_CONN_FAILED_TO_BE_ESTABLISHED 0x3E /**< Connection Failed to be Established. */
/** @} */
#endif // BLE_HCI_H__
/** @} */

View File

@ -0,0 +1,177 @@
/*
* Copyright (c) Nordic Semiconductor ASA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* 4. This software must only be used in a processor manufactured by Nordic
* Semiconductor ASA, or in a processor manufactured by a third party that
* is used in combination with a processor manufactured by Nordic Semiconductor.
*
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/**
@addtogroup BLE_L2CAP Logical Link Control and Adaptation Protocol (L2CAP)
@{
@brief Definitions and prototypes for the L2CAP interface.
*/
#ifndef BLE_L2CAP_H__
#define BLE_L2CAP_H__
#include "ble_types.h"
#include "ble_ranges.h"
#include "ble_err.h"
#include "nrf_svc.h"
/**@addtogroup BLE_L2CAP_ENUMERATIONS Enumerations
* @{ */
/**@brief L2CAP API SVC numbers. */
enum BLE_L2CAP_SVCS
{
SD_BLE_L2CAP_CID_REGISTER = BLE_L2CAP_SVC_BASE, /**< Register a CID. */
SD_BLE_L2CAP_CID_UNREGISTER, /**< Unregister a CID. */
SD_BLE_L2CAP_TX /**< Transmit a packet. */
};
/**@brief L2CAP Event IDs. */
enum BLE_L2CAP_EVTS
{
BLE_L2CAP_EVT_RX = BLE_L2CAP_EVT_BASE /**< L2CAP packet received. */
};
/** @} */
/**@addtogroup BLE_L2CAP_DEFINES Defines
* @{ */
/**@defgroup BLE_ERRORS_L2CAP SVC return values specific to L2CAP
* @{ */
#define BLE_ERROR_L2CAP_CID_IN_USE (NRF_L2CAP_ERR_BASE + 0x000) /**< CID already in use. */
/** @} */
/**@brief Default L2CAP MTU. */
#define BLE_L2CAP_MTU_DEF (23)
/**@brief Invalid Channel Identifier. */
#define BLE_L2CAP_CID_INVALID (0x0000)
/**@brief Dynamic Channel Identifier base. */
#define BLE_L2CAP_CID_DYN_BASE (0x0040)
/**@brief Maximum amount of dynamic CIDs. */
#define BLE_L2CAP_CID_DYN_MAX (8)
/** @} */
/**@addtogroup BLE_L2CAP_STRUCTURES Structures
* @{ */
/**@brief Packet header format for L2CAP transmission. */
typedef struct
{
uint16_t len; /**< Length of valid info in data member. */
uint16_t cid; /**< Channel ID on which packet is transmitted. */
} ble_l2cap_header_t;
/**@brief L2CAP Received packet event report. */
typedef struct
{
ble_l2cap_header_t header; /**< L2CAP packet header. */
uint8_t data[1]; /**< Packet data, variable length. */
} ble_l2cap_evt_rx_t;
/**@brief L2CAP event callback event structure. */
typedef struct
{
uint16_t conn_handle; /**< Connection Handle on which event occured. */
union
{
ble_l2cap_evt_rx_t rx; /**< RX Event parameters. */
} params; /**< Event Parameters. */
} ble_l2cap_evt_t;
/** @} */
/**@addtogroup BLE_L2CAP_FUNCTIONS Functions
* @{ */
/**@brief Register a CID with L2CAP.
*
* @details This registers a higher protocol layer with the L2CAP multiplexer, and is requried prior to all operations on the CID.
*
* @param[in] cid L2CAP CID.
*
* @retval ::NRF_SUCCESS Successfully registered a CID with the L2CAP layer.
* @retval ::NRF_ERROR_INVALID_PARAM Invalid parameter(s) supplied, CID must be above @ref BLE_L2CAP_CID_DYN_BASE.
* @retval ::BLE_ERROR_L2CAP_CID_IN_USE L2CAP CID already in use.
* @retval ::NRF_ERROR_NO_MEM Not enough memory to complete operation.
*/
SVCALL(SD_BLE_L2CAP_CID_REGISTER, uint32_t, sd_ble_l2cap_cid_register(uint16_t cid));
/**@brief Unregister a CID with L2CAP.
*
* @details This unregisters a previously registerd higher protocol layer with the L2CAP multiplexer.
*
* @param[in] cid L2CAP CID.
*
* @retval ::NRF_SUCCESS Successfully unregistered the CID.
* @retval ::NRF_ERROR_INVALID_PARAM Invalid parameter(s) supplied.
* @retval ::NRF_ERROR_NOT_FOUND CID not previously registered.
*/
SVCALL(SD_BLE_L2CAP_CID_UNREGISTER, uint32_t, sd_ble_l2cap_cid_unregister(uint16_t cid));
/**@brief Transmit an L2CAP packet.
*
* @note It is important to note that a call to this function will <b>consume an application buffer</b>, and will therefore
* generate a @ref BLE_EVT_TX_COMPLETE event when the packet has been transmitted.
* Please see the documentation of @ref sd_ble_tx_buffer_count_get for more details.
*
* @param[in] conn_handle Connection Handle.
* @param[in] p_header Pointer to a packet header containing length and CID.
* @param[in] p_data Pointer to the data to be transmitted.
*
* @retval ::NRF_SUCCESS Successfully queued an L2CAP packet for transmission.
* @retval ::NRF_ERROR_INVALID_ADDR Invalid pointer supplied.
* @retval ::NRF_ERROR_INVALID_PARAM Invalid parameter(s) supplied, CIDs must be registered beforehand with @ref sd_ble_l2cap_cid_register.
* @retval ::NRF_ERROR_NOT_FOUND CID not found.
* @retval ::NRF_ERROR_NO_MEM Not enough memory to complete operation.
* @retval ::BLE_ERROR_NO_TX_BUFFERS Not enough application buffers available.
* @retval ::NRF_ERROR_DATA_SIZE Invalid data size(s) supplied, see @ref BLE_L2CAP_MTU_DEF.
*/
SVCALL(SD_BLE_L2CAP_TX, uint32_t, sd_ble_l2cap_tx(uint16_t conn_handle, ble_l2cap_header_t const *p_header, uint8_t const *p_data));
/** @} */
#endif // BLE_L2CAP_H__
/**
@}
*/

View File

@ -0,0 +1,119 @@
/*
* Copyright (c) Nordic Semiconductor ASA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* 4. This software must only be used in a processor manufactured by Nordic
* Semiconductor ASA, or in a processor manufactured by a third party that
* is used in combination with a processor manufactured by Nordic Semiconductor.
*
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/**
@addtogroup BLE_COMMON
@{
@defgroup ble_ranges Module specific SVC, event and option number subranges
@{
@brief Definition of SVC, event and option number subranges for each API module.
@note
SVCs, event and option numbers are split into subranges for each API module.
Each module receives its entire allocated range of SVC calls, whether implemented or not,
but return BLE_ERROR_NOT_SUPPORTED for unimplemented or undefined calls in its range.
Note that the symbols BLE_<module>_SVC_LAST is the end of the allocated SVC range,
rather than the last SVC function call actually defined and implemented.
Specific SVC, event and option values are defined in each module's ble_<module>.h file,
which defines names of each individual SVC code based on the range start value.
*/
#ifndef BLE_RANGES_H__
#define BLE_RANGES_H__
#define BLE_SVC_BASE 0x60 /**< Common BLE SVC base. */
#define BLE_SVC_LAST 0x6B /**< Total: 12. */
#define BLE_RESERVED_SVC_BASE 0x6C /**< Reserved BLE SVC base. */
#define BLE_RESERVED_SVC_LAST 0x6F /**< Total: 4. */
#define BLE_GAP_SVC_BASE 0x70 /**< GAP BLE SVC base. */
#define BLE_GAP_SVC_LAST 0x8F /**< Total: 32. */
#define BLE_GATTC_SVC_BASE 0x90 /**< GATTC BLE SVC base. */
#define BLE_GATTC_SVC_LAST 0x9F /**< Total: 32. */
#define BLE_GATTS_SVC_BASE 0xA0 /**< GATTS BLE SVC base. */
#define BLE_GATTS_SVC_LAST 0xAF /**< Total: 16. */
#define BLE_L2CAP_SVC_BASE 0xB0 /**< L2CAP BLE SVC base. */
#define BLE_L2CAP_SVC_LAST 0xBF /**< Total: 16. */
#define BLE_EVT_INVALID 0x00 /**< Invalid BLE Event. */
#define BLE_EVT_BASE 0x01 /**< Common BLE Event base. */
#define BLE_EVT_LAST 0x0F /**< Total: 15. */
#define BLE_GAP_EVT_BASE 0x10 /**< GAP BLE Event base. */
#define BLE_GAP_EVT_LAST 0x2F /**< Total: 32. */
#define BLE_GATTC_EVT_BASE 0x30 /**< GATTC BLE Event base. */
#define BLE_GATTC_EVT_LAST 0x4F /**< Total: 32. */
#define BLE_GATTS_EVT_BASE 0x50 /**< GATTS BLE Event base. */
#define BLE_GATTS_EVT_LAST 0x6F /**< Total: 32. */
#define BLE_L2CAP_EVT_BASE 0x70 /**< L2CAP BLE Event base. */
#define BLE_L2CAP_EVT_LAST 0x8F /**< Total: 32. */
#define BLE_OPT_INVALID 0x00 /**< Invalid BLE Option. */
#define BLE_OPT_BASE 0x01 /**< Common BLE Option base. */
#define BLE_OPT_LAST 0x1F /**< Total: 31. */
#define BLE_GAP_OPT_BASE 0x20 /**< GAP BLE Option base. */
#define BLE_GAP_OPT_LAST 0x3F /**< Total: 32. */
#define BLE_GATTC_OPT_BASE 0x40 /**< GATTC BLE Option base. */
#define BLE_GATTC_OPT_LAST 0x5F /**< Total: 32. */
#define BLE_GATTS_OPT_BASE 0x60 /**< GATTS BLE Option base. */
#define BLE_GATTS_OPT_LAST 0x7F /**< Total: 32. */
#define BLE_L2CAP_OPT_BASE 0x80 /**< L2CAP BLE Option base. */
#define BLE_L2CAP_OPT_LAST 0x9F /**< Total: 32. */
#endif /* BLE_RANGES_H__ */
/**
@}
@}
*/

View File

@ -0,0 +1,198 @@
/*
* Copyright (c) Nordic Semiconductor ASA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* 4. This software must only be used in a processor manufactured by Nordic
* Semiconductor ASA, or in a processor manufactured by a third party that
* is used in combination with a processor manufactured by Nordic Semiconductor.
*
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/**
@addtogroup BLE_COMMON
@{
@defgroup ble_types Common types and macro definitions
@{
@brief Common types and macro definitions for the BLE SoftDevice.
*/
#ifndef BLE_TYPES_H__
#define BLE_TYPES_H__
#include <stdint.h>
/** @addtogroup BLE_TYPES_DEFINES Defines
* @{ */
/** @defgroup BLE_CONN_HANDLES BLE Connection Handles
* @{ */
#define BLE_CONN_HANDLE_INVALID 0xFFFF /**< Invalid Connection Handle. */
#define BLE_CONN_HANDLE_ALL 0xFFFE /**< Applies to all Connection Handles. */
/** @} */
/** @defgroup BLE_UUID_VALUES Assigned Values for BLE UUIDs
* @{ */
/* Generic UUIDs, applicable to all services */
#define BLE_UUID_UNKNOWN 0x0000 /**< Reserved UUID. */
#define BLE_UUID_SERVICE_PRIMARY 0x2800 /**< Primary Service. */
#define BLE_UUID_SERVICE_SECONDARY 0x2801 /**< Secondary Service. */
#define BLE_UUID_SERVICE_INCLUDE 0x2802 /**< Include. */
#define BLE_UUID_CHARACTERISTIC 0x2803 /**< Characteristic. */
#define BLE_UUID_DESCRIPTOR_CHAR_EXT_PROP 0x2900 /**< Characteristic Extended Properties Descriptor. */
#define BLE_UUID_DESCRIPTOR_CHAR_USER_DESC 0x2901 /**< Characteristic User Description Descriptor. */
#define BLE_UUID_DESCRIPTOR_CLIENT_CHAR_CONFIG 0x2902 /**< Client Characteristic Configuration Descriptor. */
#define BLE_UUID_DESCRIPTOR_SERVER_CHAR_CONFIG 0x2903 /**< Server Characteristic Configuration Descriptor. */
#define BLE_UUID_DESCRIPTOR_CHAR_PRESENTATION_FORMAT 0x2904 /**< Characteristic Presentation Format Descriptor. */
#define BLE_UUID_DESCRIPTOR_CHAR_AGGREGATE_FORMAT 0x2905 /**< Characteristic Aggregate Format Descriptor. */
/* GATT specific UUIDs */
#define BLE_UUID_GATT 0x1801 /**< Generic Attribute Profile. */
#define BLE_UUID_GATT_CHARACTERISTIC_SERVICE_CHANGED 0x2A05 /**< Service Changed Characteristic. */
/* GAP specific UUIDs */
#define BLE_UUID_GAP 0x1800 /**< Generic Access Profile. */
#define BLE_UUID_GAP_CHARACTERISTIC_DEVICE_NAME 0x2A00 /**< Device Name Characteristic. */
#define BLE_UUID_GAP_CHARACTERISTIC_APPEARANCE 0x2A01 /**< Appearance Characteristic. */
#define BLE_UUID_GAP_CHARACTERISTIC_PPF 0x2A02 /**< Peripheral Privacy Flag Characteristic. */
#define BLE_UUID_GAP_CHARACTERISTIC_RECONN_ADDR 0x2A03 /**< Reconnection Address Characteristic. */
#define BLE_UUID_GAP_CHARACTERISTIC_PPCP 0x2A04 /**< Peripheral Preferred Connection Parameters Characteristic. */
/** @} */
/** @defgroup BLE_UUID_TYPES Types of UUID
* @{ */
#define BLE_UUID_TYPE_UNKNOWN 0x00 /**< Invalid UUID type. */
#define BLE_UUID_TYPE_BLE 0x01 /**< Bluetooth SIG UUID (16-bit). */
#define BLE_UUID_TYPE_VENDOR_BEGIN 0x02 /**< Vendor UUID types start at this index (128-bit). */
/** @} */
/** @defgroup BLE_APPEARANCES Bluetooth Appearance values
* @note Retrieved from http://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.gap.appearance.xml
* @{ */
#define BLE_APPEARANCE_UNKNOWN 0 /**< Unknown. */
#define BLE_APPEARANCE_GENERIC_PHONE 64 /**< Generic Phone. */
#define BLE_APPEARANCE_GENERIC_COMPUTER 128 /**< Generic Computer. */
#define BLE_APPEARANCE_GENERIC_WATCH 192 /**< Generic Watch. */
#define BLE_APPEARANCE_WATCH_SPORTS_WATCH 193 /**< Watch: Sports Watch. */
#define BLE_APPEARANCE_GENERIC_CLOCK 256 /**< Generic Clock. */
#define BLE_APPEARANCE_GENERIC_DISPLAY 320 /**< Generic Display. */
#define BLE_APPEARANCE_GENERIC_REMOTE_CONTROL 384 /**< Generic Remote Control. */
#define BLE_APPEARANCE_GENERIC_EYE_GLASSES 448 /**< Generic Eye-glasses. */
#define BLE_APPEARANCE_GENERIC_TAG 512 /**< Generic Tag. */
#define BLE_APPEARANCE_GENERIC_KEYRING 576 /**< Generic Keyring. */
#define BLE_APPEARANCE_GENERIC_MEDIA_PLAYER 640 /**< Generic Media Player. */
#define BLE_APPEARANCE_GENERIC_BARCODE_SCANNER 704 /**< Generic Barcode Scanner. */
#define BLE_APPEARANCE_GENERIC_THERMOMETER 768 /**< Generic Thermometer. */
#define BLE_APPEARANCE_THERMOMETER_EAR 769 /**< Thermometer: Ear. */
#define BLE_APPEARANCE_GENERIC_HEART_RATE_SENSOR 832 /**< Generic Heart rate Sensor. */
#define BLE_APPEARANCE_HEART_RATE_SENSOR_HEART_RATE_BELT 833 /**< Heart Rate Sensor: Heart Rate Belt. */
#define BLE_APPEARANCE_GENERIC_BLOOD_PRESSURE 896 /**< Generic Blood Pressure. */
#define BLE_APPEARANCE_BLOOD_PRESSURE_ARM 897 /**< Blood Pressure: Arm. */
#define BLE_APPEARANCE_BLOOD_PRESSURE_WRIST 898 /**< Blood Pressure: Wrist. */
#define BLE_APPEARANCE_GENERIC_HID 960 /**< Human Interface Device (HID). */
#define BLE_APPEARANCE_HID_KEYBOARD 961 /**< Keyboard (HID Subtype). */
#define BLE_APPEARANCE_HID_MOUSE 962 /**< Mouse (HID Subtype). */
#define BLE_APPEARANCE_HID_JOYSTICK 963 /**< Joystiq (HID Subtype). */
#define BLE_APPEARANCE_HID_GAMEPAD 964 /**< Gamepad (HID Subtype). */
#define BLE_APPEARANCE_HID_DIGITIZERSUBTYPE 965 /**< Digitizer Tablet (HID Subtype). */
#define BLE_APPEARANCE_HID_CARD_READER 966 /**< Card Reader (HID Subtype). */
#define BLE_APPEARANCE_HID_DIGITAL_PEN 967 /**< Digital Pen (HID Subtype). */
#define BLE_APPEARANCE_HID_BARCODE 968 /**< Barcode Scanner (HID Subtype). */
#define BLE_APPEARANCE_GENERIC_GLUCOSE_METER 1024 /**< Generic Glucose Meter. */
#define BLE_APPEARANCE_GENERIC_RUNNING_WALKING_SENSOR 1088 /**< Generic Running Walking Sensor. */
#define BLE_APPEARANCE_RUNNING_WALKING_SENSOR_IN_SHOE 1089 /**< Running Walking Sensor: In-Shoe. */
#define BLE_APPEARANCE_RUNNING_WALKING_SENSOR_ON_SHOE 1090 /**< Running Walking Sensor: On-Shoe. */
#define BLE_APPEARANCE_RUNNING_WALKING_SENSOR_ON_HIP 1091 /**< Running Walking Sensor: On-Hip. */
#define BLE_APPEARANCE_GENERIC_CYCLING 1152 /**< Generic Cycling. */
#define BLE_APPEARANCE_CYCLING_CYCLING_COMPUTER 1153 /**< Cycling: Cycling Computer. */
#define BLE_APPEARANCE_CYCLING_SPEED_SENSOR 1154 /**< Cycling: Speed Sensor. */
#define BLE_APPEARANCE_CYCLING_CADENCE_SENSOR 1155 /**< Cycling: Cadence Sensor. */
#define BLE_APPEARANCE_CYCLING_POWER_SENSOR 1156 /**< Cycling: Power Sensor. */
#define BLE_APPEARANCE_CYCLING_SPEED_CADENCE_SENSOR 1157 /**< Cycling: Speed and Cadence Sensor. */
#define BLE_APPEARANCE_GENERIC_PULSE_OXIMETER 3136 /**< Generic Pulse Oximeter. */
#define BLE_APPEARANCE_PULSE_OXIMETER_FINGERTIP 3137 /**< Fingertip (Pulse Oximeter subtype). */
#define BLE_APPEARANCE_PULSE_OXIMETER_WRIST_WORN 3138 /**< Wrist Worn(Pulse Oximeter subtype). */
#define BLE_APPEARANCE_GENERIC_WEIGHT_SCALE 3200 /**< Generic Weight Scale. */
#define BLE_APPEARANCE_GENERIC_OUTDOOR_SPORTS_ACT 5184 /**< Generic Outdoor Sports Activity. */
#define BLE_APPEARANCE_OUTDOOR_SPORTS_ACT_LOC_DISP 5185 /**< Location Display Device (Outdoor Sports Activity subtype). */
#define BLE_APPEARANCE_OUTDOOR_SPORTS_ACT_LOC_AND_NAV_DISP 5186 /**< Location and Navigation Display Device (Outdoor Sports Activity subtype). */
#define BLE_APPEARANCE_OUTDOOR_SPORTS_ACT_LOC_POD 5187 /**< Location Pod (Outdoor Sports Activity subtype). */
#define BLE_APPEARANCE_OUTDOOR_SPORTS_ACT_LOC_AND_NAV_POD 5188 /**< Location and Navigation Pod (Outdoor Sports Activity subtype). */
/** @} */
/** @brief Set .type and .uuid fields of ble_uuid_struct to specified uuid value. */
#define BLE_UUID_BLE_ASSIGN(instance, value) do {\
instance.type = BLE_UUID_TYPE_BLE; \
instance.uuid = value;} while(0)
/** @brief Copy type and uuid members from src to dst ble_uuid_t pointer. Both pointers must be valid/non-null. */
#define BLE_UUID_COPY_PTR(dst, src) do {\
(dst)->type = (src)->type; \
(dst)->uuid = (src)->uuid;} while(0)
/** @brief Copy type and uuid members from src to dst ble_uuid_t struct. */
#define BLE_UUID_COPY_INST(dst, src) do {\
(dst).type = (src).type; \
(dst).uuid = (src).uuid;} while(0)
/** @brief Compare for equality both type and uuid members of two (valid, non-null) ble_uuid_t pointers. */
#define BLE_UUID_EQ(p_uuid1, p_uuid2) \
(((p_uuid1)->type == (p_uuid2)->type) && ((p_uuid1)->uuid == (p_uuid2)->uuid))
/** @brief Compare for difference both type and uuid members of two (valid, non-null) ble_uuid_t pointers. */
#define BLE_UUID_NEQ(p_uuid1, p_uuid2) \
(((p_uuid1)->type != (p_uuid2)->type) || ((p_uuid1)->uuid != (p_uuid2)->uuid))
/** @} */
/** @addtogroup BLE_TYPES_STRUCTURES Structures
* @{ */
/** @brief 128 bit UUID values. */
typedef struct
{
unsigned char uuid128[16]; /**< Little-Endian UUID bytes. */
} ble_uuid128_t;
/** @brief Bluetooth Low Energy UUID type, encapsulates both 16-bit and 128-bit UUIDs. */
typedef struct
{
uint16_t uuid; /**< 16-bit UUID value or octets 12-13 of 128-bit UUID. */
uint8_t type; /**< UUID type, see @ref BLE_UUID_TYPES. If type is @ref BLE_UUID_TYPE_UNKNOWN, the value of uuid is undefined. */
} ble_uuid_t;
/** @} */
#endif /* BLE_TYPES_H__ */
/**
@}
@}
*/

View File

@ -0,0 +1,78 @@
/*
* Copyright (c) Nordic Semiconductor ASA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* 4. This software must only be used in a processor manufactured by Nordic
* Semiconductor ASA, or in a processor manufactured by a third party that
* is used in combination with a processor manufactured by Nordic Semiconductor.
*
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/**
@defgroup nrf_error SoftDevice Global Error Codes
@{
@brief Global Error definitions
*/
/* Header guard */
#ifndef NRF_ERROR_H__
#define NRF_ERROR_H__
/** @defgroup NRF_ERRORS_BASE Error Codes Base number definitions
* @{ */
#define NRF_ERROR_BASE_NUM (0x0) ///< Global error base
#define NRF_ERROR_SDM_BASE_NUM (0x1000) ///< SDM error base
#define NRF_ERROR_SOC_BASE_NUM (0x2000) ///< SoC error base
#define NRF_ERROR_STK_BASE_NUM (0x3000) ///< STK error base
/** @} */
#define NRF_SUCCESS (NRF_ERROR_BASE_NUM + 0) ///< Successful command
#define NRF_ERROR_SVC_HANDLER_MISSING (NRF_ERROR_BASE_NUM + 1) ///< SVC handler is missing
#define NRF_ERROR_SOFTDEVICE_NOT_ENABLED (NRF_ERROR_BASE_NUM + 2) ///< SoftDevice has not been enabled
#define NRF_ERROR_INTERNAL (NRF_ERROR_BASE_NUM + 3) ///< Internal Error
#define NRF_ERROR_NO_MEM (NRF_ERROR_BASE_NUM + 4) ///< No Memory for operation
#define NRF_ERROR_NOT_FOUND (NRF_ERROR_BASE_NUM + 5) ///< Not found
#define NRF_ERROR_NOT_SUPPORTED (NRF_ERROR_BASE_NUM + 6) ///< Not supported
#define NRF_ERROR_INVALID_PARAM (NRF_ERROR_BASE_NUM + 7) ///< Invalid Parameter
#define NRF_ERROR_INVALID_STATE (NRF_ERROR_BASE_NUM + 8) ///< Invalid state, operation disallowed in this state
#define NRF_ERROR_INVALID_LENGTH (NRF_ERROR_BASE_NUM + 9) ///< Invalid Length
#define NRF_ERROR_INVALID_FLAGS (NRF_ERROR_BASE_NUM + 10) ///< Invalid Flags
#define NRF_ERROR_INVALID_DATA (NRF_ERROR_BASE_NUM + 11) ///< Invalid Data
#define NRF_ERROR_DATA_SIZE (NRF_ERROR_BASE_NUM + 12) ///< Data size exceeds limit
#define NRF_ERROR_TIMEOUT (NRF_ERROR_BASE_NUM + 13) ///< Operation timed out
#define NRF_ERROR_NULL (NRF_ERROR_BASE_NUM + 14) ///< Null Pointer
#define NRF_ERROR_FORBIDDEN (NRF_ERROR_BASE_NUM + 15) ///< Forbidden Operation
#define NRF_ERROR_INVALID_ADDR (NRF_ERROR_BASE_NUM + 16) ///< Bad Memory Address
#define NRF_ERROR_BUSY (NRF_ERROR_BASE_NUM + 17) ///< Busy
#endif // NRF_ERROR_H__
/**
@}
*/

View File

@ -0,0 +1,60 @@
/*
* Copyright (c) Nordic Semiconductor ASA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* 4. This software must only be used in a processor manufactured by Nordic
* Semiconductor ASA, or in a processor manufactured by a third party that
* is used in combination with a processor manufactured by Nordic Semiconductor.
*
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/**
@addtogroup nrf_sdm_api
@{
@defgroup nrf_sdm_error SoftDevice Manager Error Codes
@{
@brief Error definitions for the SDM API
*/
/* Header guard */
#ifndef NRF_ERROR_SDM_H__
#define NRF_ERROR_SDM_H__
#include "nrf_error.h"
#define NRF_ERROR_SDM_LFCLK_SOURCE_UNKNOWN (NRF_ERROR_SDM_BASE_NUM + 0) ///< Unknown lfclk source.
#define NRF_ERROR_SDM_INCORRECT_INTERRUPT_CONFIGURATION (NRF_ERROR_SDM_BASE_NUM + 1) ///< Incorrect interrupt configuration (can be caused by using illegal priority levels, or having enabled SoftDevice interrupts).
#define NRF_ERROR_SDM_INCORRECT_CLENR0 (NRF_ERROR_SDM_BASE_NUM + 2) ///< Incorrect CLENR0 (can be caused by erronous SoftDevice flashing).
#endif // NRF_ERROR_SDM_H__
/**
@}
@}
*/

View File

@ -0,0 +1,76 @@
/*
* Copyright (c) Nordic Semiconductor ASA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* 4. This software must only be used in a processor manufactured by Nordic
* Semiconductor ASA, or in a processor manufactured by a third party that
* is used in combination with a processor manufactured by Nordic Semiconductor.
*
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/**
@addtogroup nrf_soc_api
@{
@defgroup nrf_soc_error SoC Library Error Codes
@{
@brief Error definitions for the SoC library
*/
/* Header guard */
#ifndef NRF_ERROR_SOC_H__
#define NRF_ERROR_SOC_H__
#include "nrf_error.h"
/* Mutex Errors */
#define NRF_ERROR_SOC_MUTEX_ALREADY_TAKEN (NRF_ERROR_SOC_BASE_NUM + 0) ///< Mutex already taken
/* NVIC errors */
#define NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE (NRF_ERROR_SOC_BASE_NUM + 1) ///< NVIC interrupt not available
#define NRF_ERROR_SOC_NVIC_INTERRUPT_PRIORITY_NOT_ALLOWED (NRF_ERROR_SOC_BASE_NUM + 2) ///< NVIC interrupt priority not allowed
#define NRF_ERROR_SOC_NVIC_SHOULD_NOT_RETURN (NRF_ERROR_SOC_BASE_NUM + 3) ///< NVIC should not return
/* Power errors */
#define NRF_ERROR_SOC_POWER_MODE_UNKNOWN (NRF_ERROR_SOC_BASE_NUM + 4) ///< Power mode unknown
#define NRF_ERROR_SOC_POWER_POF_THRESHOLD_UNKNOWN (NRF_ERROR_SOC_BASE_NUM + 5) ///< Power POF threshold unknown
#define NRF_ERROR_SOC_POWER_OFF_SHOULD_NOT_RETURN (NRF_ERROR_SOC_BASE_NUM + 6) ///< Power off should not return
/* Rand errors */
#define NRF_ERROR_SOC_RAND_NOT_ENOUGH_VALUES (NRF_ERROR_SOC_BASE_NUM + 7) ///< RAND not enough values
/* PPI errors */
#define NRF_ERROR_SOC_PPI_INVALID_CHANNEL (NRF_ERROR_SOC_BASE_NUM + 8) ///< Invalid PPI Channel
#define NRF_ERROR_SOC_PPI_INVALID_GROUP (NRF_ERROR_SOC_BASE_NUM + 9) ///< Invalid PPI Group
#endif // NRF_ERROR_SOC_H__
/**
@}
@}
*/

View File

@ -0,0 +1,184 @@
/*
* Copyright (c) Nordic Semiconductor ASA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* 4. This software must only be used in a processor manufactured by Nordic
* Semiconductor ASA, or in a processor manufactured by a third party that
* is used in combination with a processor manufactured by Nordic Semiconductor.
*
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/**
@defgroup nrf_mbr_api Master Boot Record API
@{
@brief APIs for updating SoftDevice and BootLoader
*/
/* Header guard */
#ifndef NRF_MBR_H__
#define NRF_MBR_H__
#include "nrf_svc.h"
#include <stdint.h>
/** @addtogroup NRF_MBR_DEFINES Defines
* @{ */
/**@brief MBR SVC Base number. */
#define MBR_SVC_BASE (0x18)
/** @} */
/** @addtogroup NRF_MBR_ENUMS Enumerations
* @{ */
/**@brief nRF Master Boot Record API SVC numbers. */
enum NRF_MBR_SVCS
{
SD_MBR_COMMAND = MBR_SVC_BASE, /**< ::sd_mbr_command */
};
/**@brief Possible values for ::sd_mbr_command_t.command */
enum NRF_MBR_COMMANDS
{
SD_MBR_COMMAND_COPY_BL, /**< Copy a new BootLoader. @see sd_mbr_command_copy_bl_t */
SD_MBR_COMMAND_COPY_SD, /**< Copy a new SoftDevice. @see ::sd_mbr_command_copy_sd_t*/
SD_MBR_COMMAND_INIT_SD, /**< Init forwarding interrupts to SD, and run reset function in SD*/
SD_MBR_COMMAND_COMPARE, /**< This command works like memcmp. @see ::sd_mbr_command_compare_t*/
SD_MBR_COMMAND_VECTOR_TABLE_BASE_SET, /**< Start forwarding all exception to this address @see ::sd_mbr_command_vector_table_base_set_t*/
};
/** @} */
/** @addtogroup NRF_MBR_TYPES Types
* @{ */
/**@brief This command copies part of a new SoftDevice
* The destination area is erased before copying.
* If dst is in the middle of a flash page, that whole flash page will be erased.
* If (dst+len) is in the middle of a flash page, that whole flash page will be erased.
*
* The user of this function is responsible for setting the PROTENSET registers.
*
* @retval ::NRF_SUCCESS indicates that the contents of the memory blocks where copied correctly.
* @retval ::NRF_ERROR_INTERNAL indicates that the contents of the memory blocks where not verified correctly after copying.
*/
typedef struct
{
uint32_t *src; /**< Pointer to the source of data to be copied.*/
uint32_t *dst; /**< Pointer to the destination where the content is to be copied.*/
uint32_t len; /**< Number of 32 bit words to copy. Must be a multiple of PAGE_SIZE_IN_WORDS words.*/
} sd_mbr_command_copy_sd_t;
/**@brief This command works like memcmp, but takes the length in words.
*
* @retval ::NRF_SUCCESS indicates that the contents of both memory blocks are equal.
* @retval ::NRF_ERROR_NULL indicates that the contents of the memory blocks are not equal.
*/
typedef struct
{
uint32_t *ptr1; /**< Pointer to block of memory. */
uint32_t *ptr2; /**< Pointer to block of memory. */
uint32_t len; /**< Number of 32 bit words to compare.*/
} sd_mbr_command_compare_t;
/**@brief This command copies a new BootLoader.
* With this command, destination of BootLoader is always the address written in NRF_UICR->BOOTADDR.
*
* Destination is erased by this function.
* If (destination+bl_len) is in the middle of a flash page, that whole flash page will be erased.
*
* This function will use PROTENSET to protect the flash that is not intended to be written.
*
* On Success, this function will not return. It will start the new BootLoader from reset-vector as normal.
*
* @retval ::NRF_ERROR_INTERNAL indicates an internal error that should not happen.
* @retval ::NRF_ERROR_FORBIDDEN if NRF_UICR->BOOTADDR is not set.
* @retval ::NRF_ERROR_INVALID_LENGTH if parameters attempts to read or write outside flash area.
*/
typedef struct
{
uint32_t *bl_src; /**< Pointer to the source of the Bootloader to be be copied.*/
uint32_t bl_len; /**< Number of 32 bit words to copy for BootLoader. */
} sd_mbr_command_copy_bl_t;
/**@brief Sets the base address of the interrupt vector table for interrupts forwarded from the MBR
*
* Once this function has been called, this address is where the MBR will start to forward interrupts to after a reset.
*
* To restore default forwarding this function should be called with @param address set to 0.
* The MBR will then start forwarding to interrupts to the adress in NFR_UICR->BOOTADDR or to the SoftDevice if the BOOTADDR is not set.
*
* @retval ::NRF_SUCCESS
* @retval ::NRF_ERROR_INTERNAL indicates an internal error that should not happen.
* @retval ::NRF_ERROR_INVALID_ADDR if parameter address is outside of the flash size.
*/
typedef struct
{
uint32_t address; /**< The base address of the interrupt vector table for forwarded interrupts.*/
} sd_mbr_command_vector_table_base_set_t;
typedef struct
{
uint32_t command; /**< type of command to be issued see @ref NRF_MBR_COMMANDS. */
union
{
sd_mbr_command_copy_sd_t copy_sd; /**< Parameters for copy SoftDevice.*/
sd_mbr_command_copy_bl_t copy_bl; /**< Parameters for copy BootLoader.*/
sd_mbr_command_compare_t compare; /**< Parameters for verify.*/
sd_mbr_command_vector_table_base_set_t base_set; /**< Parameters for vector table base set.*/
} params;
} sd_mbr_command_t;
/** @} */
/** @addtogroup NRF_MBR_FUNCTIONS Functions
* @{ */
/**@brief Issue Master Boot Record commands
*
* Commands used when updating a SoftDevice and bootloader.
*
* @param[in] param Pointer to a struct describing the command.
*
*@note for retvals see ::sd_mbr_command_copy_sd_t ::sd_mbr_command_copy_bl_t ::sd_mbr_command_compare_t
*/
SVCALL(SD_MBR_COMMAND, uint32_t, sd_mbr_command(sd_mbr_command_t* param));
/** @} */
#endif // NRF_MBR_H__
/**
@}
*/

View File

@ -0,0 +1,221 @@
/*
* Copyright (c) Nordic Semiconductor ASA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* 4. This software must only be used in a processor manufactured by Nordic
* Semiconductor ASA, or in a processor manufactured by a third party that
* is used in combination with a processor manufactured by Nordic Semiconductor.
*
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/**
@defgroup nrf_sdm_api SoftDevice Manager API
@{
@brief APIs for SoftDevice management.
*/
/* Header guard */
#ifndef NRF_SDM_H__
#define NRF_SDM_H__
#include "nrf_svc.h"
#include "nrf51.h"
#include "nrf_soc.h"
#include "nrf_error_sdm.h"
/** @addtogroup NRF_SDM_DEFINES Defines
* @{ */
/** @brief SoftDevice Manager SVC Base number. */
#define SDM_SVC_BASE 0x10
/** @} */
/** @brief Defines the SoftDevice Information Structure location (address) as an offset from
the start of the softdevice (without MBR)*/
#define SOFTDEVICE_INFO_STRUCT_OFFSET (0x2000)
/** @brief Defines the usual size reserverd for the MBR when a softdevice is written to flash.
This is the offset where the first byte of the softdevice hex file is written.*/
#define MBR_SIZE (0x1000)
/** @brief Defines the absolute Softdevice information structure location (address)*/
#define SOFTDEVICE_INFO_STRUCT_ADDRESS (SOFTDEVICE_INFO_STRUCT_OFFSET + MBR_SIZE)
/** @brief Defines the offset for Softdevice size value relative to Softdevice base address*/
#define SD_SIZE_OFFSET (SOFTDEVICE_INFO_STRUCT_OFFSET + 0x08)
/** @brief Defines the offset for FWID value relative to Softdevice base address*/
#define SD_FWID_OFFSET (SOFTDEVICE_INFO_STRUCT_OFFSET + 0x0C)
/** @brief Defines a macro for retreiving the actual Softdevice size value from a given base address
use @ref MBR_SIZE when Softdevice is installed just above the MBR (the usual case)*/
#define SD_SIZE_GET(baseaddr) (*((uint32_t *) ((baseaddr) + SD_SIZE_OFFSET)))
/** @brief Defines a macro for retreiving the actual FWID value from a given base address
use @ref MBR_SIZE when Softdevice is installed just above the MBR (the usual case)*/
#define SD_FWID_GET(baseaddr) ((*((uint32_t *) ((baseaddr) + SD_FWID_OFFSET))) & 0xFFFF)
/** @addtogroup NRF_SDM_ENUMS Enumerations
* @{ */
/**@brief nRF SoftDevice Manager API SVC numbers. */
enum NRF_SD_SVCS
{
SD_SOFTDEVICE_ENABLE = SDM_SVC_BASE, /**< ::sd_softdevice_enable */
SD_SOFTDEVICE_DISABLE, /**< ::sd_softdevice_disable */
SD_SOFTDEVICE_IS_ENABLED, /**< ::sd_softdevice_is_enabled */
SD_SOFTDEVICE_VECTOR_TABLE_BASE_SET, /**< ::sd_softdevice_vector_table_base_set */
SVC_SDM_LAST /**< Placeholder for last SDM SVC */
};
/**@brief Possible lfclk oscillator sources. */
enum NRF_CLOCK_LFCLKSRCS
{
NRF_CLOCK_LFCLKSRC_SYNTH_250_PPM, /**< LFCLK Synthesized from HFCLK. */
NRF_CLOCK_LFCLKSRC_XTAL_500_PPM, /**< LFCLK crystal oscillator 500 PPM accuracy. */
NRF_CLOCK_LFCLKSRC_XTAL_250_PPM, /**< LFCLK crystal oscillator 250 PPM accuracy. */
NRF_CLOCK_LFCLKSRC_XTAL_150_PPM, /**< LFCLK crystal oscillator 150 PPM accuracy. */
NRF_CLOCK_LFCLKSRC_XTAL_100_PPM, /**< LFCLK crystal oscillator 100 PPM accuracy. */
NRF_CLOCK_LFCLKSRC_XTAL_75_PPM, /**< LFCLK crystal oscillator 75 PPM accuracy. */
NRF_CLOCK_LFCLKSRC_XTAL_50_PPM, /**< LFCLK crystal oscillator 50 PPM accuracy. */
NRF_CLOCK_LFCLKSRC_XTAL_30_PPM, /**< LFCLK crystal oscillator 30 PPM accuracy. */
NRF_CLOCK_LFCLKSRC_XTAL_20_PPM, /**< LFCLK crystal oscillator 20 PPM accuracy. */
NRF_CLOCK_LFCLKSRC_RC_250_PPM_250MS_CALIBRATION, /**< LFCLK RC oscillator, 250ms calibration interval.*/
NRF_CLOCK_LFCLKSRC_RC_250_PPM_500MS_CALIBRATION, /**< LFCLK RC oscillator, 500ms calibration interval.*/
NRF_CLOCK_LFCLKSRC_RC_250_PPM_1000MS_CALIBRATION, /**< LFCLK RC oscillator, 1000ms calibration interval.*/
NRF_CLOCK_LFCLKSRC_RC_250_PPM_2000MS_CALIBRATION, /**< LFCLK RC oscillator, 2000ms calibration interval.*/
NRF_CLOCK_LFCLKSRC_RC_250_PPM_4000MS_CALIBRATION, /**< LFCLK RC oscillator, 4000ms calibration interval.*/
NRF_CLOCK_LFCLKSRC_RC_250_PPM_8000MS_CALIBRATION, /**< LFCLK RC oscillator, 8000ms calibration interval.*/
NRF_CLOCK_LFCLKSRC_RC_250_PPM_TEMP_1000MS_CALIBRATION, /**< LFCLK RC oscillator. Temperature checked every 1000ms, if changed above a threshold, a calibration is done.*/
NRF_CLOCK_LFCLKSRC_RC_250_PPM_TEMP_2000MS_CALIBRATION, /**< LFCLK RC oscillator. Temperature checked every 2000ms, if changed above a threshold, a calibration is done.*/
NRF_CLOCK_LFCLKSRC_RC_250_PPM_TEMP_4000MS_CALIBRATION, /**< LFCLK RC oscillator. Temperature checked every 4000ms, if changed above a threshold, a calibration is done.*/
NRF_CLOCK_LFCLKSRC_RC_250_PPM_TEMP_8000MS_CALIBRATION, /**< LFCLK RC oscillator. Temperature checked every 8000ms, if changed above a threshold, a calibration is done.*/
NRF_CLOCK_LFCLKSRC_RC_250_PPM_TEMP_16000MS_CALIBRATION, /**< LFCLK RC oscillator. Temperature checked every 16000ms, if changed above a threshold, a calibration is done.*/
};
/** @} */
/** @addtogroup NRF_SDM_TYPES Types
* @{ */
/**@brief Type representing lfclk oscillator source. */
typedef uint32_t nrf_clock_lfclksrc_t;
/**@brief SoftDevice Assertion Handler type.
*
* When an unexpected error occurs within the SoftDevice it will call the SoftDevice assertion handler callback.
* The protocol stack will be in an undefined state when this happens and the only way to recover will be to
* perform a reset, using e.g. CMSIS NVIC_SystemReset().
*
* @note This callback is executed in HardFault context, thus SVC functions cannot be called from the SoftDevice assert callback.
*
* @param[in] pc The program counter of the failed assert.
* @param[in] line_number Line number where the assert failed.
* @param[in] file_name File name where the assert failed.
*/
typedef void (*softdevice_assertion_handler_t)(uint32_t pc, uint16_t line_number, const uint8_t * p_file_name);
/** @} */
/** @addtogroup NRF_SDM_FUNCTIONS Functions
* @{ */
/**@brief Enables the SoftDevice and by extension the protocol stack.
*
* Idempotent function to enable the SoftDevice.
*
* @note Some care must be taken if a low frequency clock source is already running when calling this function:
* If the LF clock has a different source then the one currently running, it will be stopped. Then, the new
* clock source will be started.
*
* @note This function has no effect when returning with an error.
*
* @post If return code is ::NRF_SUCCESS
* - SoC library and protocol stack APIs are made available.
* - A portion of RAM will be unavailable (see relevant SDS documentation).
* - Some peripherals will be unavailable or available only through the SoC API (see relevant SDS documentation).
* - Interrupts will not arrive from protected peripherals or interrupts.
* - nrf_nvic_ functions must be used instead of CMSIS NVIC_ functions for reliable usage of the softdevice.
* - Interrupt latency may be affected by the SoftDevice (see relevant SDS documentation).
* - Chosen low frequency clock source will be running.
*
* @param clock_source Low frequency clock source and accuracy. (Note: In the case of XTAL source, the PPM accuracy of the chosen clock source must be greater than or equal to the actual characteristics of your XTAL clock).
* @param assertion_handler Callback for SoftDevice assertions.
*
* @retval ::NRF_SUCCESS
* @retval ::NRF_ERROR_INVALID_STATE SoftDevice is already enabled, and the clock source and assertion handler cannot be updated.
* @retval ::NRF_ERROR_SDM_INCORRECT_INTERRUPT_CONFIGURATION SoftDeviceinterrupt is already enabled, or an enabled interrupt has an illegal priority level.
* @retval ::NRF_ERROR_SDM_LFCLK_SOURCE_UNKNOWN Unknown low frequency clock source selected.
*/
SVCALL(SD_SOFTDEVICE_ENABLE, uint32_t, sd_softdevice_enable(nrf_clock_lfclksrc_t clock_source, softdevice_assertion_handler_t assertion_handler));
/**@brief Disables the SoftDevice and by extension the protocol stack.
*
* Idempotent function to disable the SoftDevice.
*
* @post SoC library and protocol stack APIs are made unavailable.
* @post All interrupts that was protected by the SoftDevice will be disabled and initialized to priority 0 (highest).
* @post All peripherals used by the SoftDevice will be reset to default values.
* @post All of RAM become available.
* @post All interrupts are forwarded to the application.
* @post LFCLK source chosen in ::sd_softdevice_enable will be left running.
*
* @retval ::NRF_SUCCESS
*/
SVCALL(SD_SOFTDEVICE_DISABLE, uint32_t, sd_softdevice_disable(void));
/**@brief Check if the SoftDevice is enabled.
*
* @param[out] p_softdevice_enabled If the SoftDevice is enabled: 1 else 0.
*
* @retval ::NRF_SUCCESS
*/
SVCALL(SD_SOFTDEVICE_IS_ENABLED, uint32_t, sd_softdevice_is_enabled(uint8_t * p_softdevice_enabled));
/**@brief Sets the base address of the interrupt vector table for interrupts forwarded from the SoftDevice
*
* This function is only intended to be called when a bootloader is enabled.
*
* @param[in] address The base address of the interrupt vector table for forwarded interrupts.
* @retval ::NRF_SUCCESS
*/
SVCALL(SD_SOFTDEVICE_VECTOR_TABLE_BASE_SET, uint32_t, sd_softdevice_vector_table_base_set(uint32_t address));
/** @} */
#endif // NRF_SDM_H__
/**
@}
*/

View File

@ -0,0 +1,993 @@
/*
* Copyright (c) Nordic Semiconductor ASA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* 4. This software must only be used in a processor manufactured by Nordic
* Semiconductor ASA, or in a processor manufactured by a third party that
* is used in combination with a processor manufactured by Nordic Semiconductor.
*
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/**
* @defgroup nrf_soc_api SoC Library API
* @{
*
* @brief APIs for the SoC library.
*
*/
#ifndef NRF_SOC_H__
#define NRF_SOC_H__
#include <stdint.h>
#include <stdbool.h>
#include "nrf_svc.h"
#include "nrf51.h"
#include "nrf51_bitfields.h"
#include "nrf_error_soc.h"
/**@addtogroup NRF_SOC_DEFINES Defines
* @{ */
/**@brief The number of the lowest SVC number reserved for the SoC library. */
#define SOC_SVC_BASE (0x20)
#define SOC_SVC_BASE_NOT_AVAILABLE (0x2B)
/**@brief Guranteed time for application to process radio inactive notification. */
#define NRF_RADIO_NOTIFICATION_INACTIVE_GUARANTEED_TIME_US (62)
/**@brief The minimum allowed timeslot extension time. */
#define NRF_RADIO_MINIMUM_TIMESLOT_LENGTH_EXTENSION_TIME_US (200)
#define SOC_ECB_KEY_LENGTH (16) /**< ECB key length. */
#define SOC_ECB_CLEARTEXT_LENGTH (16) /**< ECB cleartext length. */
#define SOC_ECB_CIPHERTEXT_LENGTH (SOC_ECB_CLEARTEXT_LENGTH) /**< ECB ciphertext length. */
#define SD_EVT_IRQn (SWI2_IRQn) /**< SoftDevice Event IRQ number. Used for both protocol events and SoC events. */
#define SD_EVT_IRQHandler (SWI2_IRQHandler) /**< SoftDevice Event IRQ handler. Used for both protocol events and SoC events. */
#define RADIO_NOTIFICATION_IRQn (SWI1_IRQn) /**< The radio notification IRQ number. */
#define RADIO_NOTIFICATION_IRQHandler (SWI1_IRQHandler) /**< The radio notification IRQ handler. */
#define NRF_RADIO_LENGTH_MIN_US (100) /**< The shortest allowed radio timeslot, in microseconds. */
#define NRF_RADIO_LENGTH_MAX_US (100000) /**< The longest allowed radio timeslot, in microseconds. */
#define NRF_RADIO_DISTANCE_MAX_US (128000000UL - 1UL) /**< The longest timeslot distance, in microseconds, allowed for the distance parameter (see @ref nrf_radio_request_normal_t) in the request. */
#define NRF_RADIO_EARLIEST_TIMEOUT_MAX_US (128000000UL - 1UL) /**< The longest timeout, in microseconds, allowed when requesting the earliest possible timeslot. */
#define NRF_RADIO_START_JITTER_US (2) /**< The maximum jitter in @ref NRF_RADIO_CALLBACK_SIGNAL_TYPE_START relative to the requested start time. */
/**@} */
/**@addtogroup NRF_SOC_TYPES Types
* @{ */
/**@brief The SVC numbers used by the SVC functions in the SoC library. */
enum NRF_SOC_SVCS
{
SD_PPI_CHANNEL_ENABLE_GET = SOC_SVC_BASE,
SD_PPI_CHANNEL_ENABLE_SET,
SD_PPI_CHANNEL_ENABLE_CLR,
SD_PPI_CHANNEL_ASSIGN,
SD_PPI_GROUP_TASK_ENABLE,
SD_PPI_GROUP_TASK_DISABLE,
SD_PPI_GROUP_ASSIGN,
SD_PPI_GROUP_GET,
SD_FLASH_PAGE_ERASE,
SD_FLASH_WRITE,
SD_FLASH_PROTECT,
SD_MUTEX_NEW = SOC_SVC_BASE_NOT_AVAILABLE,
SD_MUTEX_ACQUIRE,
SD_MUTEX_RELEASE,
SD_NVIC_ENABLEIRQ,
SD_NVIC_DISABLEIRQ,
SD_NVIC_GETPENDINGIRQ,
SD_NVIC_SETPENDINGIRQ,
SD_NVIC_CLEARPENDINGIRQ,
SD_NVIC_SETPRIORITY,
SD_NVIC_GETPRIORITY,
SD_NVIC_SYSTEMRESET,
SD_NVIC_CRITICAL_REGION_ENTER,
SD_NVIC_CRITICAL_REGION_EXIT,
SD_RAND_APPLICATION_POOL_CAPACITY,
SD_RAND_APPLICATION_BYTES_AVAILABLE,
SD_RAND_APPLICATION_GET_VECTOR,
SD_POWER_MODE_SET,
SD_POWER_SYSTEM_OFF,
SD_POWER_RESET_REASON_GET,
SD_POWER_RESET_REASON_CLR,
SD_POWER_POF_ENABLE,
SD_POWER_POF_THRESHOLD_SET,
SD_POWER_RAMON_SET,
SD_POWER_RAMON_CLR,
SD_POWER_RAMON_GET,
SD_POWER_GPREGRET_SET,
SD_POWER_GPREGRET_CLR,
SD_POWER_GPREGRET_GET,
SD_POWER_DCDC_MODE_SET,
SD_APP_EVT_WAIT,
SD_CLOCK_HFCLK_REQUEST,
SD_CLOCK_HFCLK_RELEASE,
SD_CLOCK_HFCLK_IS_RUNNING,
SD_RADIO_NOTIFICATION_CFG_SET,
SD_ECB_BLOCK_ENCRYPT,
SD_RADIO_SESSION_OPEN,
SD_RADIO_SESSION_CLOSE,
SD_RADIO_REQUEST,
SD_EVT_GET,
SD_TEMP_GET,
SVC_SOC_LAST
};
/**@brief Possible values of a ::nrf_mutex_t. */
enum NRF_MUTEX_VALUES
{
NRF_MUTEX_FREE,
NRF_MUTEX_TAKEN
};
/**@brief Possible values of ::nrf_app_irq_priority_t. */
enum NRF_APP_PRIORITIES
{
NRF_APP_PRIORITY_HIGH = 1,
NRF_APP_PRIORITY_LOW = 3
};
/**@brief Possible values of ::nrf_power_mode_t. */
enum NRF_POWER_MODES
{
NRF_POWER_MODE_CONSTLAT, /**< Constant latency mode. See power management in the reference manual. */
NRF_POWER_MODE_LOWPWR /**< Low power mode. See power management in the reference manual. */
};
/**@brief Possible values of ::nrf_power_failure_threshold_t */
enum NRF_POWER_THRESHOLDS
{
NRF_POWER_THRESHOLD_V21, /**< 2.1 Volts power failure threshold. */
NRF_POWER_THRESHOLD_V23, /**< 2.3 Volts power failure threshold. */
NRF_POWER_THRESHOLD_V25, /**< 2.5 Volts power failure threshold. */
NRF_POWER_THRESHOLD_V27 /**< 2.7 Volts power failure threshold. */
};
/**@brief Possible values of ::nrf_power_dcdc_mode_t. */
enum NRF_POWER_DCDC_MODES
{
NRF_POWER_DCDC_DISABLE, /**< The DCDC is disabled. */
NRF_POWER_DCDC_ENABLE /**< The DCDC is enabled. */
};
/**@brief Possible values of ::nrf_radio_notification_distance_t. */
enum NRF_RADIO_NOTIFICATION_DISTANCES
{
NRF_RADIO_NOTIFICATION_DISTANCE_NONE = 0, /**< The event does not have a notification. */
NRF_RADIO_NOTIFICATION_DISTANCE_800US, /**< The distance from the active notification to start of radio activity. */
NRF_RADIO_NOTIFICATION_DISTANCE_1740US, /**< The distance from the active notification to start of radio activity. */
NRF_RADIO_NOTIFICATION_DISTANCE_2680US, /**< The distance from the active notification to start of radio activity. */
NRF_RADIO_NOTIFICATION_DISTANCE_3620US, /**< The distance from the active notification to start of radio activity. */
NRF_RADIO_NOTIFICATION_DISTANCE_4560US, /**< The distance from the active notification to start of radio activity. */
NRF_RADIO_NOTIFICATION_DISTANCE_5500US /**< The distance from the active notification to start of radio activity. */
};
/**@brief Possible values of ::nrf_radio_notification_type_t. */
enum NRF_RADIO_NOTIFICATION_TYPES
{
NRF_RADIO_NOTIFICATION_TYPE_NONE = 0, /**< The event does not have a radio notification signal. */
NRF_RADIO_NOTIFICATION_TYPE_INT_ON_ACTIVE, /**< Using interrupt for notification when the radio will be enabled. */
NRF_RADIO_NOTIFICATION_TYPE_INT_ON_INACTIVE, /**< Using interrupt for notification when the radio has been disabled. */
NRF_RADIO_NOTIFICATION_TYPE_INT_ON_BOTH, /**< Using interrupt for notification both when the radio will be enabled and disabled. */
};
/**@brief SoC Events. */
enum NRF_SOC_EVTS
{
NRF_EVT_HFCLKSTARTED, /**< Event indicating that the HFCLK has started. */
NRF_EVT_POWER_FAILURE_WARNING, /**< Event indicating that a power failure warning has occurred. */
NRF_EVT_FLASH_OPERATION_SUCCESS, /**< Event indicating that the ongoing flash operation has completed successfully. */
NRF_EVT_FLASH_OPERATION_ERROR, /**< Event indicating that the ongoing flash operation has timed out with an error. */
NRF_EVT_RADIO_BLOCKED, /**< Event indicating that a radio timeslot was blocked. */
NRF_EVT_RADIO_CANCELED, /**< Event indicating that a radio timeslot was canceled by SoftDevice. */
NRF_EVT_RADIO_SIGNAL_CALLBACK_INVALID_RETURN, /**< Event indicating that a radio signal callback handler return was invalid. */
NRF_EVT_RADIO_SESSION_IDLE, /**< Event indicating that a radio session is idle. */
NRF_EVT_RADIO_SESSION_CLOSED, /**< Event indicating that a radio session is closed. */
NRF_EVT_NUMBER_OF_EVTS
};
/**@} */
/**@addtogroup NRF_SOC_TYPES Types
* @{ */
/**@brief Represents a mutex for use with the nrf_mutex functions.
* @note Accessing the value directly is not safe, use the mutex functions!
*/
typedef volatile uint8_t nrf_mutex_t;
/**@brief The interrupt priorities available to the application while the softdevice is active. */
typedef uint8_t nrf_app_irq_priority_t;
/**@brief Represents a power mode, used in power mode functions */
typedef uint8_t nrf_power_mode_t;
/**@brief Represents a power failure threshold value. */
typedef uint8_t nrf_power_failure_threshold_t;
/**@brief Represents a DCDC mode value. */
typedef uint32_t nrf_power_dcdc_mode_t;
/**@brief Radio notification distances. */
typedef uint8_t nrf_radio_notification_distance_t;
/**@brief Radio notification types. */
typedef uint8_t nrf_radio_notification_type_t;
/**@brief The Radio signal callback types. */
enum NRF_RADIO_CALLBACK_SIGNAL_TYPE
{
NRF_RADIO_CALLBACK_SIGNAL_TYPE_START, /**< This signal indicates the start of the radio timeslot. */
NRF_RADIO_CALLBACK_SIGNAL_TYPE_TIMER0, /**< This signal indicates the NRF_TIMER0 interrupt. */
NRF_RADIO_CALLBACK_SIGNAL_TYPE_RADIO, /**< This signal indicates the NRF_RADIO interrupt. */
NRF_RADIO_CALLBACK_SIGNAL_TYPE_EXTEND_FAILED, /**< This signal indicates extend action failed. */
NRF_RADIO_CALLBACK_SIGNAL_TYPE_EXTEND_SUCCEEDED /**< This signal indicates extend action succeeded. */
};
/**@brief The actions requested by the signal callback.
*
* This code gives the SOC instructions about what action to take when the signal callback has
* returned.
*/
enum NRF_RADIO_SIGNAL_CALLBACK_ACTION
{
NRF_RADIO_SIGNAL_CALLBACK_ACTION_NONE, /**< Return without action. */
NRF_RADIO_SIGNAL_CALLBACK_ACTION_EXTEND, /**< Request an extension of the current timeslot (maximum execution time for this action is when the extension succeeded). */
NRF_RADIO_SIGNAL_CALLBACK_ACTION_END, /**< End the current radio timeslot. */
NRF_RADIO_SIGNAL_CALLBACK_ACTION_REQUEST_AND_END /**< Request a new radio timeslot and end the current timeslot. */
};
/**@brief Radio timeslot high frequency clock source configuration. */
enum NRF_RADIO_HFCLK_CFG
{
NRF_RADIO_HFCLK_CFG_DEFAULT, /**< Use the currently selected oscillator as HF clock source during the timeslot (i.e. the source is not specified). */
NRF_RADIO_HFCLK_CFG_FORCE_XTAL, /**< Force external crystal to be used as HF clock source during whole the timeslot. */
};
/**@brief Radio timeslot priorities. */
enum NRF_RADIO_PRIORITY
{
NRF_RADIO_PRIORITY_HIGH, /**< High (equal priority as the normal connection priority of the SoftDevice stack(s)). */
NRF_RADIO_PRIORITY_NORMAL, /**< Normal (equal priority as the priority of secondary activites of the SoftDevice stack(s)). */
};
/**@brief Radio timeslot request type. */
enum NRF_RADIO_REQUEST_TYPE
{
NRF_RADIO_REQ_TYPE_EARLIEST, /**< Request timeslot as early as possible. This should always be used for the first request in a session. */
NRF_RADIO_REQ_TYPE_NORMAL /**< Normal timeslot request. */
};
/**@brief Parameters for a request for a timeslot as early as possible. */
typedef struct
{
uint8_t hfclk; /**< High frequency clock source, see @ref NRF_RADIO_HFCLK_CFG. */
uint8_t priority; /**< The radio timeslot priority, see @ref NRF_RADIO_PRIORITY. */
uint32_t length_us; /**< The radio timeslot length (in the range 100 to 100,000] microseconds). */
uint32_t timeout_us; /**< Longest acceptable delay until the start of the requested timeslot (up to @ref NRF_RADIO_EARLIEST_TIMEOUT_MAX_US microseconds). */
} nrf_radio_request_earliest_t;
/**@brief Parameters for a normal radio request. */
typedef struct
{
uint8_t hfclk; /**< High frequency clock source, see @ref NRF_RADIO_HFCLK_CFG. */
uint8_t priority; /**< The radio timeslot priority, see @ref NRF_RADIO_PRIORITY. */
uint32_t distance_us; /**< Distance from the start of the previous radio timeslot (up to @ref NRF_RADIO_DISTANCE_MAX_US microseconds). */
uint32_t length_us; /**< The radio timeslot length (in the range [100..100,000] microseconds). */
} nrf_radio_request_normal_t;
/**@brief Radio request parameters. */
typedef struct
{
uint8_t request_type; /**< Type of request, see @ref NRF_RADIO_REQUEST_TYPE. */
union
{
nrf_radio_request_earliest_t earliest; /**< Parameters for a request for a timeslot as early as possible. */
nrf_radio_request_normal_t normal; /**< Parameters for a normal radio request. */
} params;
} nrf_radio_request_t;
/**@brief Return parameters of the radio timeslot signal callback. */
typedef struct
{
uint8_t callback_action; /**< The action requested by the application when returning from the signal callback, see @ref NRF_RADIO_SIGNAL_CALLBACK_ACTION. */
union
{
struct
{
nrf_radio_request_t * p_next; /**< The request parameters for the next radio timeslot. */
} request; /**< Additional parameters for return_code @ref NRF_RADIO_SIGNAL_CALLBACK_ACTION_REQUEST_AND_END. */
struct
{
uint32_t length_us; /**< Requested extension of the timeslot duration (microseconds) (for minimum time see @ref NRF_RADIO_MINIMUM_TIMESLOT_LENGTH_EXTENSION_TIME_US). */
} extend; /**< Additional parameters for return_code @ref NRF_RADIO_SIGNAL_CALLBACK_ACTION_EXTEND. */
} params;
} nrf_radio_signal_callback_return_param_t;
/**@brief The radio signal callback type.
*
* @note In case of invalid return parameters, the radio timeslot will automatically end
* immediately after returning from the signal callback and the
* @ref NRF_EVT_RADIO_SIGNAL_CALLBACK_INVALID_RETURN event will be sent.
* @note The returned struct pointer must remain valid after the signal callback
* function returns. For instance, this means that it must not point to a stack variable.
*
* @param[in] signal_type Type of signal, see @ref NRF_RADIO_CALLBACK_SIGNAL_TYPE.
*
* @return Pointer to structure containing action requested by the application.
*/
typedef nrf_radio_signal_callback_return_param_t * (*nrf_radio_signal_callback_t) (uint8_t signal_type);
/**@brief AES ECB data structure */
typedef struct
{
uint8_t key[SOC_ECB_KEY_LENGTH]; /**< Encryption key. */
uint8_t cleartext[SOC_ECB_CLEARTEXT_LENGTH]; /**< Clear Text data. */
uint8_t ciphertext[SOC_ECB_CIPHERTEXT_LENGTH]; /**< Cipher Text data. */
} nrf_ecb_hal_data_t;
/**@} */
/**@addtogroup NRF_SOC_FUNCTIONS Functions
* @{ */
/**@brief Initialize a mutex.
*
* @param[in] p_mutex Pointer to the mutex to initialize.
*
* @retval ::NRF_SUCCESS
*/
SVCALL(SD_MUTEX_NEW, uint32_t, sd_mutex_new(nrf_mutex_t * p_mutex));
/**@brief Attempt to acquire a mutex.
*
* @param[in] p_mutex Pointer to the mutex to acquire.
*
* @retval ::NRF_SUCCESS The mutex was successfully acquired.
* @retval ::NRF_ERROR_SOC_MUTEX_ALREADY_TAKEN The mutex could not be acquired.
*/
SVCALL(SD_MUTEX_ACQUIRE, uint32_t, sd_mutex_acquire(nrf_mutex_t * p_mutex));
/**@brief Release a mutex.
*
* @param[in] p_mutex Pointer to the mutex to release.
*
* @retval ::NRF_SUCCESS
*/
SVCALL(SD_MUTEX_RELEASE, uint32_t, sd_mutex_release(nrf_mutex_t * p_mutex));
/**@brief Enable External Interrupt.
* @note Corresponds to NVIC_EnableIRQ in CMSIS.
*
* @pre IRQn is valid and not reserved by the stack.
*
* @param[in] IRQn See the NVIC_EnableIRQ documentation in CMSIS.
*
* @retval ::NRF_SUCCESS The interrupt was enabled.
* @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE The interrupt is not available for the application.
* @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_PRIORITY_NOT_ALLOWED The interrupt has a priority not available for the application.
*/
SVCALL(SD_NVIC_ENABLEIRQ, uint32_t, sd_nvic_EnableIRQ(IRQn_Type IRQn));
/**@brief Disable External Interrupt.
* @note Corresponds to NVIC_DisableIRQ in CMSIS.
*
* @pre IRQn is valid and not reserved by the stack.
*
* @param[in] IRQn See the NVIC_DisableIRQ documentation in CMSIS.
*
* @retval ::NRF_SUCCESS The interrupt was disabled.
* @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE The interrupt is not available for the application.
*/
SVCALL(SD_NVIC_DISABLEIRQ, uint32_t, sd_nvic_DisableIRQ(IRQn_Type IRQn));
/**@brief Get Pending Interrupt.
* @note Corresponds to NVIC_GetPendingIRQ in CMSIS.
*
* @pre IRQn is valid and not reserved by the stack.
*
* @param[in] IRQn See the NVIC_GetPendingIRQ documentation in CMSIS.
* @param[out] p_pending_irq Return value from NVIC_GetPendingIRQ.
*
* @retval ::NRF_SUCCESS The interrupt is available for the application.
* @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE IRQn is not available for the application.
*/
SVCALL(SD_NVIC_GETPENDINGIRQ, uint32_t, sd_nvic_GetPendingIRQ(IRQn_Type IRQn, uint32_t * p_pending_irq));
/**@brief Set Pending Interrupt.
* @note Corresponds to NVIC_SetPendingIRQ in CMSIS.
*
* @pre IRQn is valid and not reserved by the stack.
*
* @param[in] IRQn See the NVIC_SetPendingIRQ documentation in CMSIS.
*
* @retval ::NRF_SUCCESS The interrupt is set pending.
* @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE IRQn is not available for the application.
*/
SVCALL(SD_NVIC_SETPENDINGIRQ, uint32_t, sd_nvic_SetPendingIRQ(IRQn_Type IRQn));
/**@brief Clear Pending Interrupt.
* @note Corresponds to NVIC_ClearPendingIRQ in CMSIS.
*
* @pre IRQn is valid and not reserved by the stack.
*
* @param[in] IRQn See the NVIC_ClearPendingIRQ documentation in CMSIS.
*
* @retval ::NRF_SUCCESS The interrupt pending flag is cleared.
* @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE IRQn is not available for the application.
*/
SVCALL(SD_NVIC_CLEARPENDINGIRQ, uint32_t, sd_nvic_ClearPendingIRQ(IRQn_Type IRQn));
/**@brief Set Interrupt Priority.
* @note Corresponds to NVIC_SetPriority in CMSIS.
*
* @pre IRQn is valid and not reserved by the stack.
* @pre Priority is valid and not reserved by the stack.
*
* @param[in] IRQn See the NVIC_SetPriority documentation in CMSIS.
* @param[in] priority A valid IRQ priority for use by the application.
*
* @retval ::NRF_SUCCESS The interrupt and priority level is available for the application.
* @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE IRQn is not available for the application.
* @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_PRIORITY_NOT_ALLOWED The interrupt priority is not available for the application.
*/
SVCALL(SD_NVIC_SETPRIORITY, uint32_t, sd_nvic_SetPriority(IRQn_Type IRQn, nrf_app_irq_priority_t priority));
/**@brief Get Interrupt Priority.
* @note Corresponds to NVIC_GetPriority in CMSIS.
*
* @pre IRQn is valid and not reserved by the stack.
*
* @param[in] IRQn See the NVIC_GetPriority documentation in CMSIS.
* @param[out] p_priority Return value from NVIC_GetPriority.
*
* @retval ::NRF_SUCCESS The interrupt priority is returned in p_priority.
* @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE - IRQn is not available for the application.
*/
SVCALL(SD_NVIC_GETPRIORITY, uint32_t, sd_nvic_GetPriority(IRQn_Type IRQn, nrf_app_irq_priority_t * p_priority));
/**@brief System Reset.
* @note Corresponds to NVIC_SystemReset in CMSIS.
*
* @retval ::NRF_ERROR_SOC_NVIC_SHOULD_NOT_RETURN
*/
SVCALL(SD_NVIC_SYSTEMRESET, uint32_t, sd_nvic_SystemReset(void));
/**@brief Enters critical region.
*
* @post Application interrupts will be disabled.
* @sa sd_nvic_critical_region_exit
*
* @param[out] p_is_nested_critical_region 1: If in a nested critical region.
* 0: Otherwise.
*
* @retval ::NRF_SUCCESS
*/
SVCALL(SD_NVIC_CRITICAL_REGION_ENTER, uint32_t, sd_nvic_critical_region_enter(uint8_t * p_is_nested_critical_region));
/**@brief Exit critical region.
*
* @pre Application has entered a critical region using ::sd_nvic_critical_region_enter.
* @post If not in a nested critical region, the application interrupts will restored to the state before ::sd_nvic_critical_region_enter was called.
*
* @param[in] is_nested_critical_region If this is set to 1, the critical region won't be exited. @sa sd_nvic_critical_region_enter.
*
* @retval ::NRF_SUCCESS
*/
SVCALL(SD_NVIC_CRITICAL_REGION_EXIT, uint32_t, sd_nvic_critical_region_exit(uint8_t is_nested_critical_region));
/**@brief Query the capacity of the application random pool.
*
* @param[out] p_pool_capacity The capacity of the pool.
*
* @retval ::NRF_SUCCESS
*/
SVCALL(SD_RAND_APPLICATION_POOL_CAPACITY, uint32_t, sd_rand_application_pool_capacity_get(uint8_t * p_pool_capacity));
/**@brief Get number of random bytes available to the application.
*
* @param[out] p_bytes_available The number of bytes currently available in the pool.
*
* @retval ::NRF_SUCCESS
*/
SVCALL(SD_RAND_APPLICATION_BYTES_AVAILABLE, uint32_t, sd_rand_application_bytes_available_get(uint8_t * p_bytes_available));
/**@brief Get random bytes from the application pool.
*
* @param[out] p_buff Pointer to unit8_t buffer for storing the bytes.
* @param[in] length Number of bytes to take from pool and place in p_buff.
*
* @retval ::NRF_SUCCESS The requested bytes were written to p_buff.
* @retval ::NRF_ERROR_SOC_RAND_NOT_ENOUGH_VALUES No bytes were written to the buffer, because there were not enough bytes available.
*/
SVCALL(SD_RAND_APPLICATION_GET_VECTOR, uint32_t, sd_rand_application_vector_get(uint8_t * p_buff, uint8_t length));
/**@brief Gets the reset reason register.
*
* @param[out] p_reset_reason Contents of the NRF_POWER->RESETREAS register.
*
* @retval ::NRF_SUCCESS
*/
SVCALL(SD_POWER_RESET_REASON_GET, uint32_t, sd_power_reset_reason_get(uint32_t * p_reset_reason));
/**@brief Clears the bits of the reset reason register.
*
* @param[in] reset_reason_clr_msk Contains the bits to clear from the reset reason register.
*
* @retval ::NRF_SUCCESS
*/
SVCALL(SD_POWER_RESET_REASON_CLR, uint32_t, sd_power_reset_reason_clr(uint32_t reset_reason_clr_msk));
/**@brief Sets the power mode when in CPU sleep.
*
* @param[in] power_mode The power mode to use when in CPU sleep. @sa sd_app_evt_wait
*
* @retval ::NRF_SUCCESS The power mode was set.
* @retval ::NRF_ERROR_SOC_POWER_MODE_UNKNOWN The power mode was unknown.
*/
SVCALL(SD_POWER_MODE_SET, uint32_t, sd_power_mode_set(nrf_power_mode_t power_mode));
/**@brief Puts the chip in System OFF mode.
*
* @retval ::NRF_ERROR_SOC_POWER_OFF_SHOULD_NOT_RETURN
*/
SVCALL(SD_POWER_SYSTEM_OFF, uint32_t, sd_power_system_off(void));
/**@brief Enables or disables the power-fail comparator.
*
* Enabling this will give a softdevice event (NRF_EVT_POWER_FAILURE_WARNING) when the power failure warning occurs.
* The event can be retrieved with sd_evt_get();
*
* @param[in] pof_enable True if the power-fail comparator should be enabled, false if it should be disabled.
*
* @retval ::NRF_SUCCESS
*/
SVCALL(SD_POWER_POF_ENABLE, uint32_t, sd_power_pof_enable(uint8_t pof_enable));
/**@brief Sets the power-fail threshold value.
*
* @param[in] threshold The power-fail threshold value to use.
*
* @retval ::NRF_SUCCESS The power failure threshold was set.
* @retval ::NRF_ERROR_SOC_POWER_POF_THRESHOLD_UNKNOWN The power failure threshold is unknown.
*/
SVCALL(SD_POWER_POF_THRESHOLD_SET, uint32_t, sd_power_pof_threshold_set(nrf_power_failure_threshold_t threshold));
/**@brief Sets bits in the NRF_POWER->RAMON register.
*
* @param[in] ramon Contains the bits needed to be set in the NRF_POWER->RAMON register.
*
* @retval ::NRF_SUCCESS
*/
SVCALL(SD_POWER_RAMON_SET, uint32_t, sd_power_ramon_set(uint32_t ramon));
/**@brief Clears bits in the NRF_POWER->RAMON register.
*
* @param ramon Contains the bits needed to be cleared in the NRF_POWER->RAMON register.
*
* @retval ::NRF_SUCCESS
*/
SVCALL(SD_POWER_RAMON_CLR, uint32_t, sd_power_ramon_clr(uint32_t ramon));
/**@brief Get contents of NRF_POWER->RAMON register, indicates power status of ram blocks.
*
* @param[out] p_ramon Content of NRF_POWER->RAMON register.
*
* @retval ::NRF_SUCCESS
*/
SVCALL(SD_POWER_RAMON_GET, uint32_t, sd_power_ramon_get(uint32_t * p_ramon));
/**@brief Set bits in the NRF_POWER->GPREGRET register.
*
* @param[in] gpregret_msk Bits to be set in the GPREGRET register.
*
* @retval ::NRF_SUCCESS
*/
SVCALL(SD_POWER_GPREGRET_SET, uint32_t, sd_power_gpregret_set(uint32_t gpregret_msk));
/**@brief Clear bits in the NRF_POWER->GPREGRET register.
*
* @param[in] gpregret_msk Bits to be clear in the GPREGRET register.
*
* @retval ::NRF_SUCCESS
*/
SVCALL(SD_POWER_GPREGRET_CLR, uint32_t, sd_power_gpregret_clr(uint32_t gpregret_msk));
/**@brief Get contents of the NRF_POWER->GPREGRET register.
*
* @param[out] p_gpregret Contents of the GPREGRET register.
*
* @retval ::NRF_SUCCESS
*/
SVCALL(SD_POWER_GPREGRET_GET, uint32_t, sd_power_gpregret_get(uint32_t *p_gpregret));
/**@brief Sets the DCDC mode.
*
* This function is to enable or disable the DCDC periperhal.
*
* @param[in] dcdc_mode The mode of the DCDC.
*
* @retval ::NRF_SUCCESS
* @retval ::NRF_ERROR_INVALID_PARAM The DCDC mode is invalid.
*/
SVCALL(SD_POWER_DCDC_MODE_SET, uint32_t, sd_power_dcdc_mode_set(nrf_power_dcdc_mode_t dcdc_mode));
/**@brief Request the high frequency crystal oscillator.
*
* Will start the high frequency crystal oscillator, the startup time of the crystal varies
* and the ::sd_clock_hfclk_is_running function can be polled to check if it has started.
*
* @see sd_clock_hfclk_is_running
* @see sd_clock_hfclk_release
*
* @retval ::NRF_SUCCESS
*/
SVCALL(SD_CLOCK_HFCLK_REQUEST, uint32_t, sd_clock_hfclk_request(void));
/**@brief Releases the high frequency crystal oscillator.
*
* Will stop the high frequency crystal oscillator, this happens immediately.
*
* @see sd_clock_hfclk_is_running
* @see sd_clock_hfclk_request
*
* @retval ::NRF_SUCCESS
*/
SVCALL(SD_CLOCK_HFCLK_RELEASE, uint32_t, sd_clock_hfclk_release(void));
/**@brief Checks if the high frequency crystal oscillator is running.
*
* @see sd_clock_hfclk_request
* @see sd_clock_hfclk_release
*
* @param[out] p_is_running 1 if the external crystal oscillator is running, 0 if not.
*
* @retval ::NRF_SUCCESS
*/
SVCALL(SD_CLOCK_HFCLK_IS_RUNNING, uint32_t, sd_clock_hfclk_is_running(uint32_t * p_is_running));
/**@brief Waits for an application event.
*
* An application event is either an application interrupt or a pended interrupt when the
* interrupt is disabled. When the interrupt is enabled it will be taken immediately since
* this function will wait in thread mode, then the execution will return in the application's
* main thread. When an interrupt is disabled and gets pended it will return to the application's
* thread main. The application must ensure that the pended flag is cleared using
* ::sd_nvic_ClearPendingIRQ in order to sleep using this function. This is only necessary for
* disabled interrupts, as the interrupt handler will clear the pending flag automatically for
* enabled interrupts.
*
* In order to wake up from disabled interrupts, the SEVONPEND flag has to be set in the Cortex-M0
* System Control Register (SCR). @sa CMSIS_SCB
*
* @note If an application interrupt has happened since the last time sd_app_evt_wait was
* called this function will return immediately and not go to sleep. This is to avoid race
* conditions that can occur when a flag is updated in the interrupt handler and processed
* in the main loop.
*
* @post An application interrupt has happened or a interrupt pending flag is set.
*
* @retval ::NRF_SUCCESS
*/
SVCALL(SD_APP_EVT_WAIT, uint32_t, sd_app_evt_wait(void));
/**@brief Get PPI channel enable register contents.
*
* @param[out] p_channel_enable The contents of the PPI CHEN register.
*
* @retval ::NRF_SUCCESS
*/
SVCALL(SD_PPI_CHANNEL_ENABLE_GET, uint32_t, sd_ppi_channel_enable_get(uint32_t * p_channel_enable));
/**@brief Set PPI channel enable register.
*
* @param[in] channel_enable_set_msk Mask containing the bits to set in the PPI CHEN register.
*
* @retval ::NRF_SUCCESS
*/
SVCALL(SD_PPI_CHANNEL_ENABLE_SET, uint32_t, sd_ppi_channel_enable_set(uint32_t channel_enable_set_msk));
/**@brief Clear PPI channel enable register.
*
* @param[in] channel_enable_clr_msk Mask containing the bits to clear in the PPI CHEN register.
*
* @retval ::NRF_SUCCESS
*/
SVCALL(SD_PPI_CHANNEL_ENABLE_CLR, uint32_t, sd_ppi_channel_enable_clr(uint32_t channel_enable_clr_msk));
/**@brief Assign endpoints to a PPI channel.
*
* @param[in] channel_num Number of the PPI channel to assign.
* @param[in] evt_endpoint Event endpoint of the PPI channel.
* @param[in] task_endpoint Task endpoint of the PPI channel.
*
* @retval ::NRF_ERROR_SOC_PPI_INVALID_CHANNEL The channel number is invalid.
* @retval ::NRF_SUCCESS
*/
SVCALL(SD_PPI_CHANNEL_ASSIGN, uint32_t, sd_ppi_channel_assign(uint8_t channel_num, const volatile void * evt_endpoint, const volatile void * task_endpoint));
/**@brief Task to enable a channel group.
*
* @param[in] group_num Number of the channel group.
*
* @retval ::NRF_ERROR_SOC_PPI_INVALID_GROUP The group number is invalid
* @retval ::NRF_SUCCESS
*/
SVCALL(SD_PPI_GROUP_TASK_ENABLE, uint32_t, sd_ppi_group_task_enable(uint8_t group_num));
/**@brief Task to disable a channel group.
*
* @param[in] group_num Number of the PPI group.
*
* @retval ::NRF_ERROR_SOC_PPI_INVALID_GROUP The group number is invalid.
* @retval ::NRF_SUCCESS
*/
SVCALL(SD_PPI_GROUP_TASK_DISABLE, uint32_t, sd_ppi_group_task_disable(uint8_t group_num));
/**@brief Assign PPI channels to a channel group.
*
* @param[in] group_num Number of the channel group.
* @param[in] channel_msk Mask of the channels to assign to the group.
*
* @retval ::NRF_ERROR_SOC_PPI_INVALID_GROUP The group number is invalid.
* @retval ::NRF_SUCCESS
*/
SVCALL(SD_PPI_GROUP_ASSIGN, uint32_t, sd_ppi_group_assign(uint8_t group_num, uint32_t channel_msk));
/**@brief Gets the PPI channels of a channel group.
*
* @param[in] group_num Number of the channel group.
* @param[out] p_channel_msk Mask of the channels assigned to the group.
*
* @retval ::NRF_ERROR_SOC_PPI_INVALID_GROUP The group number is invalid.
* @retval ::NRF_SUCCESS
*/
SVCALL(SD_PPI_GROUP_GET, uint32_t, sd_ppi_group_get(uint8_t group_num, uint32_t * p_channel_msk));
/**@brief Configures the Radio Notification signal.
*
* @note
* - The notification signal latency depends on the interrupt priority settings of SWI used
* for notification signal.
* - To ensure that the radio notification signal behaves in a consistent way, always
* configure radio notifications when there is no protocol stack or other SoftDevice
* activity in progress. It is recommended that the radio notification signal is
* configured directly after the SoftDevice has been enabled.
* - In the period between the ACTIVE signal and the start of the Radio Event, the SoftDevice
* will interrupt the application to do Radio Event preparation.
* - Using the Radio Notification feature may limit the bandwidth, as the SoftDevice may have
* to shorten the connection events to have time for the Radio Notification signals.
*
* @param[in] type Type of notification signal.
* @ref NRF_RADIO_NOTIFICATION_TYPE_NONE shall be used to turn off radio
* notification. Using @ref NRF_RADIO_NOTIFICATION_DISTANCE_NONE is
* recommended (but not required) to be used with
* @ref NRF_RADIO_NOTIFICATION_TYPE_NONE.
*
* @param[in] distance Distance between the notification signal and start of radio activity.
* This parameter is ignored when @ref NRF_RADIO_NOTIFICATION_TYPE_NONE or
* @ref NRF_RADIO_NOTIFICATION_TYPE_INT_ON_INACTIVE is used.
*
* @retval ::NRF_ERROR_INVALID_PARAM The group number is invalid.
* @retval ::NRF_SUCCESS
*/
SVCALL(SD_RADIO_NOTIFICATION_CFG_SET, uint32_t, sd_radio_notification_cfg_set(nrf_radio_notification_type_t type, nrf_radio_notification_distance_t distance));
/**@brief Encrypts a block according to the specified parameters.
*
* 128-bit AES encryption.
*
* @param[in, out] p_ecb_data Pointer to the ECB parameters' struct (two input
* parameters and one output parameter).
*
* @retval ::NRF_SUCCESS
*/
SVCALL(SD_ECB_BLOCK_ENCRYPT, uint32_t, sd_ecb_block_encrypt(nrf_ecb_hal_data_t * p_ecb_data));
/**@brief Gets any pending events generated by the SoC API.
*
* The application should keep calling this function to get events, until ::NRF_ERROR_NOT_FOUND is returned.
*
* @param[out] p_evt_id Set to one of the values in @ref NRF_SOC_EVTS, if any events are pending.
*
* @retval ::NRF_SUCCESS An event was pending. The event id is written in the p_evt_id parameter.
* @retval ::NRF_ERROR_NOT_FOUND No pending events.
*/
SVCALL(SD_EVT_GET, uint32_t, sd_evt_get(uint32_t * p_evt_id));
/**@brief Get the temperature measured on the chip
*
* This function will block until the temperature measurement is done.
* It takes around 50us from call to return.
*
* @note Pan #28 in PAN-028 v 1.6 "Negative measured values are not represented correctly" is corrected by this function.
*
* @param[out] p_temp Result of temperature measurement. Die temperature in 0.25 degrees celsius.
*
* @retval ::NRF_SUCCESS A temperature measurement was done, and the temperature was written to temp
*/
SVCALL(SD_TEMP_GET, uint32_t, sd_temp_get(int32_t * p_temp));
/**@brief Flash Write
*
* Commands to write a buffer to flash
*
* If the SoftDevice is enabled:
* This call initiates the flash access command, and its completion will be communicated to the
* application with exactly one of the following events:
* - @ref NRF_EVT_FLASH_OPERATION_SUCCESS - The command was successfully completed.
* - @ref NRF_EVT_FLASH_OPERATION_ERROR - The command could not be started.
*
* If the SoftDevice is not enabled no event will be generated, and this call will return @ref NRF_SUCCESS when the
* write has been completed
*
* @note
* - This call takes control over the radio and the CPU during flash erase and write to make sure that
* they will not interfere with the flash access. This means that all interrupts will be blocked
* for a predictable time (depending on the NVMC specification in nRF51 Series Reference Manual
* and the command parameters).
*
*
* @param[in] p_dst Pointer to start of flash location to be written.
* @param[in] p_src Pointer to buffer with data to be written.
* @param[in] size Number of 32-bit words to write. Maximum size is 256 32bit words.
*
* @retval ::NRF_ERROR_INVALID_ADDR Tried to write to a non existing flash address, or p_dst or p_src was unaligned.
* @retval ::NRF_ERROR_BUSY The previous command has not yet completed.
* @retval ::NRF_ERROR_INVALID_LENGTH Size was 0, or more than 256 words.
* @retval ::NRF_ERROR_FORBIDDEN Tried to write to or read from protected location.
* @retval ::NRF_SUCCESS The command was accepted.
*/
SVCALL(SD_FLASH_WRITE, uint32_t, sd_flash_write(uint32_t * const p_dst, uint32_t const * const p_src, uint32_t size));
/**@brief Flash Erase page
*
* Commands to erase a flash page
* If the SoftDevice is enabled:
* This call initiates the flash access command, and its completion will be communicated to the
* application with exactly one of the following events:
* - @ref NRF_EVT_FLASH_OPERATION_SUCCESS - The command was successfully completed.
* - @ref NRF_EVT_FLASH_OPERATION_ERROR - The command could not be started.
*
* If the SoftDevice is not enabled no event will be generated, and this call will return @ref NRF_SUCCESS when the
* erase has been completed
*
* @note
* - This call takes control over the radio and the CPU during flash erase and write to make sure that
* they will not interfere with the flash access. This means that all interrupts will be blocked
* for a predictable time (depending on the NVMC specification in nRF51 Series Reference Manual
* and the command parameters).
*
*
* @param[in] page_number Pagenumber of the page to erase
* @retval ::NRF_ERROR_INTERNAL If a new session could not be opened due to an internal error.
* @retval ::NRF_ERROR_INVALID_ADDR Tried to erase to a non existing flash page.
* @retval ::NRF_ERROR_BUSY The previous command has not yet completed.
* @retval ::NRF_ERROR_FORBIDDEN Tried to erase a protected page.
* @retval ::NRF_SUCCESS The command was accepted.
*/
SVCALL(SD_FLASH_PAGE_ERASE, uint32_t, sd_flash_page_erase(uint32_t page_number));
/**@brief Flash Protection set
*
* Commands to set the flash protection registers PROTENSETx
*
* @note To read the values in PROTENSETx you can read them directly. They are only write-protected.
*
* @param[in] protenset0 Value to be written to PROTENSET0.
* @param[in] protenset1 Value to be written to PROTENSET1.
*
* @retval ::NRF_ERROR_FORBIDDEN Tried to protect the SoftDevice.
* @retval ::NRF_SUCCESS Values successfully written to PROTENSETx.
*/
SVCALL(SD_FLASH_PROTECT, uint32_t, sd_flash_protect(uint32_t protenset0, uint32_t protenset1));
/**@brief Opens a session for radio requests.
*
* @note Only one session can be open at a time.
* @note p_radio_signal_callback(@ref NRF_RADIO_CALLBACK_SIGNAL_TYPE_START) will be called when the radio timeslot
* starts. From this point the NRF_RADIO and NRF_TIMER0 peripherals can be freely accessed
* by the application.
* @note p_radio_signal_callback(@ref NRF_RADIO_CALLBACK_SIGNAL_TYPE_TIMER0) is called whenever the NRF_TIMER0
* interrupt occurs.
* @note p_radio_signal_callback(@ref NRF_RADIO_CALLBACK_SIGNAL_TYPE_RADIO) is called whenever the NRF_RADIO
* interrupt occurs.
* @note p_radio_signal_callback() will be called at ARM interrupt priority level 0. This
* implies that none of the sd_* API calls can be used from p_radio_signal_callback().
*
* @param[in] p_radio_signal_callback The signal callback.
*
* @retval ::NRF_ERROR_INVALID_ADDR p_radio_signal_callback is an invalid function pointer.
* @retval ::NRF_ERROR_BUSY If session cannot be opened.
* @retval ::NRF_ERROR_INTERNAL If a new session could not be opened due to an internal error.
* @retval ::NRF_SUCCESS Otherwise.
*/
SVCALL(SD_RADIO_SESSION_OPEN, uint32_t, sd_radio_session_open(nrf_radio_signal_callback_t p_radio_signal_callback));
/**@brief Closes a session for radio requests.
*
* @note Any current radio timeslot will be finished before the session is closed.
* @note If a radio timeslot is scheduled when the session is closed, it will be canceled.
* @note The application cannot consider the session closed until the @ref NRF_EVT_RADIO_SESSION_CLOSED
* event is received.
*
* @retval ::NRF_ERROR_FORBIDDEN If session not opened.
* @retval ::NRF_ERROR_BUSY If session is currently being closed.
* @retval ::NRF_SUCCESS Otherwise.
*/
SVCALL(SD_RADIO_SESSION_CLOSE, uint32_t, sd_radio_session_close(void));
/**@brief Requests a radio timeslot.
*
* @note The request type is determined by p_request->request_type, and can be one of @ref NRF_RADIO_REQ_TYPE_EARLIEST
* and @ref NRF_RADIO_REQ_TYPE_NORMAL. The first request in a session must always be of type
* @ref NRF_RADIO_REQ_TYPE_EARLIEST.
* @note For a normal request (@ref NRF_RADIO_REQ_TYPE_NORMAL), the start time of a radio timeslot is specified by
* p_request->distance_us and is given relative to the start of the previous timeslot.
* @note A too small p_request->distance_us will lead to a @ref NRF_EVT_RADIO_BLOCKED event.
* @note Timeslots scheduled too close will lead to a @ref NRF_EVT_RADIO_BLOCKED event.
* @note See the SoftDevice Specification for more on radio timeslot scheduling, distances and lengths.
* @note If an opportunity for the first radio timeslot is not found before 100ms after the call to this
* function, it is not scheduled, and instead a @ref NRF_EVT_RADIO_BLOCKED event is sent.
* The application may then try to schedule the first radio timeslot again.
* @note Successful requests will result in nrf_radio_signal_callback_t(@ref NRF_RADIO_CALLBACK_SIGNAL_TYPE_START).
* Unsuccessful requests will result in a @ref NRF_EVT_RADIO_BLOCKED event, see @ref NRF_SOC_EVTS.
* @note The jitter in the start time of the radio timeslots is +/- @ref NRF_RADIO_START_JITTER_US us.
* @note The nrf_radio_signal_callback_t(@ref NRF_RADIO_CALLBACK_SIGNAL_TYPE_START) call has a latency relative to the
* specified radio timeslot start, but this does not affect the actual start time of the timeslot.
* @note NRF_TIMER0 is reset at the start of the radio timeslot, and is clocked at 1MHz from the high frequency
* (16 MHz) clock source. If p_request->hfclk_force_xtal is true, the high frequency clock is
* guaranteed to be clocked from the external crystal.
* @note The SoftDevice will neither access the NRF_RADIO peripheral nor the NRF_TIMER0 peripheral
* during the radio timeslot.
*
* @param[in] p_request Pointer to the request parameters.
*
* @retval ::NRF_ERROR_FORBIDDEN If session not opened or the session is not IDLE.
* @retval ::NRF_ERROR_INVALID_ADDR If the p_request pointer is invalid.
* @retval ::NRF_ERROR_INVALID_PARAM If the parameters of p_request are not valid.
* @retval ::NRF_SUCCESS Otherwise.
*/
SVCALL(SD_RADIO_REQUEST, uint32_t, sd_radio_request(nrf_radio_request_t * p_request ));
/**@} */
#endif // NRF_SOC_H__
/**@} */

View File

@ -0,0 +1,71 @@
/*
* Copyright (c) Nordic Semiconductor ASA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* 4. This software must only be used in a processor manufactured by Nordic
* Semiconductor ASA, or in a processor manufactured by a third party that
* is used in combination with a processor manufactured by Nordic Semiconductor.
*
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#ifndef NRF_SVC__
#define NRF_SVC__
#ifdef SVCALL_AS_NORMAL_FUNCTION
#define SVCALL(number, return_type, signature) return_type signature
#else
#ifndef SVCALL
#if defined (__CC_ARM)
#define SVCALL(number, return_type, signature) return_type __svc(number) signature
#elif defined (__GNUC__)
#define SVCALL(number, return_type, signature) \
_Pragma("GCC diagnostic ignored \"-Wunused-function\"") \
_Pragma("GCC diagnostic push") \
_Pragma("GCC diagnostic ignored \"-Wreturn-type\"") \
__attribute__((naked)) static return_type signature \
{ \
__asm( \
"svc %0\n" \
"bx r14" : : "I" (number) : "r0" \
); \
} \
_Pragma("GCC diagnostic pop")
#elif defined (__ICCARM__)
#define PRAGMA(x) _Pragma(#x)
#define SVCALL(number, return_type, signature) \
PRAGMA(swi_number = number) \
__swi return_type signature;
#else
#define SVCALL(number, return_type, signature) return_type signature
#endif
#endif // SVCALL
#endif // SVCALL_AS_NORMAL_FUNCTION
#endif // NRF_SVC__

View File

@ -0,0 +1,73 @@
/*
* Copyright (c) Nordic Semiconductor ASA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* 4. This software must only be used in a processor manufactured by Nordic
* Semiconductor ASA, or in a processor manufactured by a third party that
* is used in combination with a processor manufactured by Nordic Semiconductor.
*
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/** @brief Utilities for verifying program logic
*/
#ifndef SOFTDEVICE_ASSERT_H_
#define SOFTDEVICE_ASSERT_H_
#include <stdint.h>
/** @brief This function handles assertions.
*
*
* @note
* This function is called when an assertion has triggered.
*
*
* @param line_num The line number where the assertion is called
* @param file_name Pointer to the file name
*/
void assert_softdevice_callback(uint16_t line_num, const uint8_t *file_name);
/*lint -emacro(506, ASSERT) */ /* Suppress "Constant value Boolean */
/*lint -emacro(774, ASSERT) */ /* Suppress "Boolean within 'if' always evaluates to True" */ \
/** @brief Check intended for production code
*
* Check passes if "expr" evaluates to true. */
#define ASSERT(expr) \
if (expr) \
{ \
} \
else \
{ \
assert_softdevice_callback((uint16_t)__LINE__, (uint8_t *)__FILE__); \
/*lint -unreachable */ \
}
#endif /* SOFTDEVICE_ASSERT_H_ */

View File

@ -0,0 +1,88 @@
S110/S120 license agreement
NORDIC SEMICONDUCTOR ASA SOFTDEVICE LICENSE AGREEMENT
License Agreement for the Nordic Semiconductor ASA ("Nordic") S110 and S120 Bluetooth SoftDevice software packages ("SoftDevice").
You ("You" "Licensee") must carefully and thoroughly read this License Agreement ("Agreement"), and accept to adhere to this Agreement before
downloading, installing and/or using any software or content in the SoftDevice provided herewith.
YOU ACCEPT THIS LICENSE AGREEMENT BY (A) CLICKING ACCEPT OR AGREE TO THIS LICENSE AGREEMENT, WHERE THIS
OPTION IS MADE AVAILABLE TO YOU; OR (B) BY ACTUALLY USING THE SOFTDEVICE, IN THIS CASE YOU AGREE THAT THE USE OF
THE SOFTDEVICE CONSTITUTES ACCEPTANCE OF THE LICENSING AGREEMENT FROM THAT POINT ONWARDS.
IF YOU DO NOT AGREE TO BE BOUND BY THE TERMS OF THIS AGREEMENT, THEN DO NOT DOWNLOAD, INSTALL/COMPLETE
INSTALLATION OF, OR IN ANY OTHER WAY MAKE USE OF THE SOFTDEVICE.
1. Grant of License
Subject to the terms in this Agreement Nordic grants Licensee a limited, non-exclusive, non-transferable, non-sub licensable, revocable license
("License"): (a) to use the SoftDevice solely in connection with a Nordic integrated circuit, and (b) to distribute the SoftDevice solely as integrated
in Licensee Product. Licensee shall not use the SoftDevice for any purpose other than specifically authorized herein. It is a material breach of this
agreement to use or modify the SoftDevice for use on any wireless connectivity integrated circuit other than a Nordic integrated circuit.
2. Title
Nordic retains full rights, title, and ownership to the SoftDevice and any and all patents, copyrights, trade secrets, trade names, trademarks, and
other intellectual property rights in and to the SoftDevice.
3. No Modifications or Reverse Engineering
Licensee shall not, modify, reverse engineer, disassemble, decompile or otherwise attempt to discover the source code of any non-source code
parts of the SoftDevice including, but not limited to pre-compiled hex files, binaries and object code.
4. Distribution Restrictions
Except as set forward in Section 1 above, the Licensee may not disclose or distribute any or all parts of the SoftDevice to any third party.
Licensee agrees to provide reasonable security precautions to prevent unauthorized access to or use of the SoftDevice as proscribed herein.
Licensee also agrees that use of and access to the SoftDevice will be strictly limited to the employees and subcontractors of the Licensee
necessary for the performance of development, verification and production tasks under this Agreement. The Licensee is responsible for making
such employees and subcontractors comply with the obligations concerning use and non-disclosure of the SoftDevice.
5. No Other Rights
Licensee shall use the SoftDevice only in compliance with this Agreement and shall refrain from using the SoftDevice in any way that may be
contrary to this Agreement.
6. Fees
Nordic grants the License to the Licensee free of charge provided that the Licensee undertakes the obligations in the Agreement and warrants to
comply with the Agreement.
7. DISCLAIMER OF WARRANTY
THE SOFTDEVICE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND EXPRESS OR IMPLIED AND NEITHER NORDIC, ITS
LICENSORS OR AFFILIATES NOR THE COPYRIGHT HOLDERS MAKE ANY REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR
THAT THE SOFTDEVICE WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS. THERE
IS NO WARRANTY BY NORDIC OR BY ANY OTHER PARTY THAT THE FUNCTIONS CONTAINED IN THE SOFTDEVICE WILL MEET THE
REQUIREMENTS OF LICENSEE OR THAT THE OPERATION OF THE SOFTDEVICE WILL BE UNINTERRUPTED OR ERROR-FREE.
LICENSEE ASSUMES ALL RESPONSIBILITY AND RISK FOR THE SELECTION OF THE SOFTDEVICE TO ACHIEVE LICENSEES
INTENDED RESULTS AND FOR THE INSTALLATION, USE AND RESULTS OBTAINED FROM IT.
8. No Support
Nordic is not obligated to furnish or make available to Licensee any further information, software, technical information, know-how, show-how,
bug-fixes or support. Nordic reserves the right to make changes to the SoftDevice without further notice.
9. Limitation of Liability
In no event shall Nordic, its employees or suppliers, licensors or affiliates be liable for any lost profits, revenue, sales, data or costs of
procurement of substitute goods or services, property damage, personal injury, interruption of business, loss of business information or for any
special, direct, indirect, incidental, economic, punitive, special or consequential damages, however caused and whether arising under contract,
tort, negligence, or other theory of liability arising out of the use of or inability to use the SoftDevice, even if Nordic or its employees or suppliers,
licensors or affiliates are advised of the possibility of such damages. Because some countries/states/jurisdictions do not allow the exclusion or
limitation of liability, but may allow liability to be limited, in such cases, Nordic, its employees or licensors or affiliates liability shall be limited to
USD 50.
10. Breach of Contract
Upon a breach of contract by the Licensee, Nordic and its licensor are entitled to damages in respect of any direct loss which can be reasonably
attributed to the breach by the Licensee. If the Licensee has acted with gross negligence or willful misconduct, the Licensee shall cover both
direct and indirect costs for Nordic and its licensors.
11. Indemnity
Licensee undertakes to indemnify, hold harmless and defend Nordic and its directors, officers, affiliates, shareholders, licensors, employees and
agents from and against any claims or lawsuits, including attorney's fees, that arise or result of the Licensees execution of the License and which
is not due to causes for which Nordic is responsible.
12. Governing Law
This Agreement shall be construed according to the laws of Norway, and hereby submits to the exclusive jurisdiction of the Oslo tingrett.
13. Assignment
Licensee shall not assign this Agreement or any rights or obligations hereunder without the prior written consent of Nordic.
14. Termination
Without prejudice to any other rights, Nordic may cancel this Agreement if Licensee does not abide by the terms and conditions of this
Agreement. Upon termination Licensee must promptly cease the use of the License and destroy all copies of the Licensed Technology and any
other material provided by Nordic or its affiliate, or produced by the Licensee in connection with the Agreement or the Licensed Technology.
15. Third party beneficiaries
Nordics licensors are intended third party beneficiaries under this Agreement.

File diff suppressed because it is too large Load Diff