raptorq/src/pi_solver.rs

830 lines
30 KiB
Rust
Raw Normal View History

2019-02-19 01:02:54 +00:00
use petgraph::algo::condensation;
use petgraph::prelude::*;
2019-03-23 01:25:07 +00:00
use crate::arraymap::ArrayMap;
use crate::arraymap::UsizeArrayMap;
use crate::matrix::OctetMatrix;
use crate::octet::Octet;
use crate::octets::count_ones_and_nonzeros;
use crate::octets::mulassign_scalar;
use crate::symbol::Symbol;
use crate::systematic_constants::num_hdpc_symbols;
use crate::systematic_constants::num_intermediate_symbols;
use crate::systematic_constants::num_ldpc_symbols;
use crate::systematic_constants::num_pi_symbols;
use crate::util::get_both_indices;
2019-02-19 01:02:54 +00:00
struct FirstPhaseRowSelectionStats {
original_degree: UsizeArrayMap,
non_zeros_per_row: UsizeArrayMap,
ones_per_row: UsizeArrayMap,
non_zeros_histogram: UsizeArrayMap,
hdpc_rows: Vec<bool>,
start_col: usize,
end_col: usize,
start_row: usize
}
impl FirstPhaseRowSelectionStats {
#[inline(never)]
#[allow(non_snake_case)]
pub fn new(matrix: &OctetMatrix, end_col: usize, num_source_symbols: u32) -> FirstPhaseRowSelectionStats {
let S = num_ldpc_symbols(num_source_symbols);
let H = num_hdpc_symbols(num_source_symbols);
// See section 5.3.3.4.2, Figure 5.
let mut hdpc_rows = vec![false; matrix.height()];
for row in S..(S + H) {
hdpc_rows[row as usize] = true;
}
let mut result = FirstPhaseRowSelectionStats {
original_degree: UsizeArrayMap::new(0, 0),
non_zeros_per_row: UsizeArrayMap::new(0, matrix.height()),
ones_per_row: UsizeArrayMap::new(0, matrix.height()),
non_zeros_histogram: UsizeArrayMap::new(0, end_col + 1),
hdpc_rows,
start_col: 0,
end_col,
start_row: 0
};
for row in 0..matrix.height() {
let (ones, non_zero) = count_ones_and_nonzeros(&matrix.get_row(row)[0..end_col]);
result.non_zeros_per_row.insert(row, non_zero);
result.ones_per_row.insert(row, ones);
result.non_zeros_histogram.increment(non_zero);
}
// Original degree is the degree of each row before processing begins
result.original_degree = result.non_zeros_per_row.clone();
result
}
pub fn swap_rows(&mut self, i: usize, j: usize) {
self.non_zeros_per_row.swap(i, j);
self.ones_per_row.swap(i, j);
self.original_degree.swap(i, j);
self.hdpc_rows.swap(i, j);
}
// Recompute all stored statistics for the given row
pub fn recompute_row(&mut self, row: usize, matrix: &OctetMatrix) {
let (ones, non_zero) = count_ones_and_nonzeros(&matrix.get_row(row)[self.start_col..self.end_col]);
self.non_zeros_histogram.decrement(self.non_zeros_per_row.get(row));
self.non_zeros_histogram.increment(non_zero);
self.non_zeros_per_row.insert(row, non_zero);
self.ones_per_row.insert(row, ones);
}
pub fn eliminate_leading_value(&mut self, row: usize, value: &Octet) {
debug_assert_ne!(*value, Octet::zero());
if *value == Octet::one() {
self.ones_per_row.decrement(row);
}
let non_zeros = self.non_zeros_per_row.get(row);
self.non_zeros_histogram.decrement(non_zeros);
self.non_zeros_histogram.increment(non_zeros - 1);
self.non_zeros_per_row.decrement(row);
}
// Set the valid columns, and recalculate statistics
#[inline(never)]
pub fn resize(&mut self, start_row: usize, end_row: usize, start_col: usize, end_col: usize, matrix: &OctetMatrix) {
// Only shrinking is supported
assert!(start_col > self.start_col);
assert!(end_col <= self.end_col);
assert_eq!(self.start_row, start_row - 1);
self.non_zeros_histogram.decrement(self.non_zeros_per_row.get(self.start_row));
for row in start_row..end_row {
for col in self.start_col..start_col {
if matrix.get(row, col) == Octet::one() {
self.ones_per_row.decrement(row);
}
if matrix.get(row, col) != Octet::zero() {
let non_zeros = self.non_zeros_per_row.get(row);
self.non_zeros_histogram.decrement(non_zeros);
self.non_zeros_histogram.increment(non_zeros - 1);
self.non_zeros_per_row.decrement(row);
}
}
for col in end_col..self.end_col {
if matrix.get(row, col) == Octet::one() {
self.ones_per_row.decrement(row);
}
if matrix.get(row, col) != Octet::zero() {
let non_zeros = self.non_zeros_per_row.get(row);
self.non_zeros_histogram.decrement(non_zeros);
self.non_zeros_histogram.increment(non_zeros - 1);
self.non_zeros_per_row.decrement(row);
}
}
}
self.start_col = start_col;
self.end_col = end_col;
self.start_row = start_row;
}
#[inline(never)]
fn first_phase_graph_substep(&self, start_row: usize, end_row: usize, rows_with_two_ones: &Vec<usize>, matrix: &OctetMatrix) -> usize {
let mut g = Graph::<usize, usize, Undirected, u32>::with_capacity(self.end_col - self.start_col, rows_with_two_ones.len());
let mut node_lookup = ArrayMap::new(self.start_col, self.end_col);
for col in self.start_col..self.end_col {
let node = g.add_node(col);
node_lookup.insert(col, node);
}
for row in rows_with_two_ones.iter() {
if self.hdpc_rows[*row] {
continue;
}
let mut ones = [0; 2];
let mut found = 0;
for col in self.start_col..self.end_col {
// "The following graph defined by the structure of V is used in determining which
// row of A is chosen. The columns that intersect V are the nodes in the graph,
// and the rows that have exactly 2 nonzero entries in V and are not HDPC rows
// are the edges of the graph that connect the two columns (nodes) in the positions
// of the two ones."
// This part of the matrix is over GF(2), so "nonzero entries" is equivalent to "ones"
if matrix.get(*row, col) == Octet::one() {
ones[found] = col;
found += 1;
}
if found == 2 {
break;
}
}
2019-03-22 03:31:54 +00:00
assert_eq!(found, 2);
2019-02-19 01:02:54 +00:00
let node1 = node_lookup.get(ones[0]);
let node2 = node_lookup.get(ones[1]);
g.add_edge(node1, node2, *row);
}
let connected_components = condensation(g.clone(), true);
let mut row_to_component_size = ArrayMap::new(start_row, end_row);
for index in connected_components.node_indices() {
let cols = connected_components.node_weight(index).unwrap();
for col in cols {
for edge in g.edges(node_lookup.get(*col)) {
row_to_component_size.insert(*edge.weight(), cols.len());
}
}
}
let mut chosen_component_size = 0;
let mut chosen_row = std::usize::MAX;
for row in rows_with_two_ones {
let row = *row;
if self.hdpc_rows[row] {
continue;
}
if row_to_component_size.get(row) > chosen_component_size {
chosen_row = row;
chosen_component_size = row_to_component_size.get(row);
}
}
assert_ne!(chosen_row, std::usize::MAX);
chosen_row
}
#[inline(never)]
fn first_phase_original_degree_substep(&self, start_row: usize, end_row: usize, r: usize) -> usize {
let mut chosen_hdpc = None;
let mut chosen_hdpc_original_degree = std::usize::MAX;
let mut chosen_non_hdpc = None;
let mut chosen_non_hdpc_original_degree = std::usize::MAX;
for row in start_row..end_row {
let non_zero = self.non_zeros_per_row.get(row);
let row_original_degree = self.original_degree.get(row);
if non_zero == r {
if self.hdpc_rows[row] {
if row_original_degree < chosen_hdpc_original_degree {
chosen_hdpc = Some(row);
chosen_hdpc_original_degree = row_original_degree;
}
}
else if row_original_degree < chosen_non_hdpc_original_degree {
chosen_non_hdpc = Some(row);
chosen_non_hdpc_original_degree = row_original_degree;
}
}
}
if chosen_non_hdpc != None {
return chosen_non_hdpc.unwrap();
}
else {
return chosen_hdpc.unwrap();
}
}
// Verify there there are no non-HPDC rows with exactly two non-zero entries, greater than one
#[inline(never)]
#[cfg(debug_assertions)]
fn first_phase_graph_substep_verify(&self, start_row: usize, end_row: usize, rows_with_two_ones: &Vec<usize>) {
for row in start_row..end_row {
if self.non_zeros_per_row.get(row) == 2 {
assert!(rows_with_two_ones.contains(&row) || self.hdpc_rows[row]);
}
}
}
// Helper method for decoder phase 1
// selects from [start_row, end_row) reading [start_col, end_col)
// Returns (the chosen row, and "r" number of non-zero values the row has)
pub fn first_phase_selection(&self, start_row: usize, end_row: usize, matrix: &OctetMatrix) -> (Option<usize>, Option<usize>) {
let mut r = None;
for i in 1..(self.end_col - self.start_col + 1) {
if self.non_zeros_histogram.get(i) > 0 {
r = Some(i);
break;
}
}
if r == None {
return (None, None);
}
if r.unwrap() == 2 {
let mut rows_with_two_ones = vec![];
let mut row_with_two_greater_than_one = None;
for row in start_row..end_row {
let non_zero = self.non_zeros_per_row.get(row);
let ones = self.ones_per_row.get(row);
if non_zero == 2 && ones != 2 {
row_with_two_greater_than_one = Some(row);
}
if non_zero == 2 && ones == 2 {
rows_with_two_ones.push(row);
}
}
// See paragraph starting "If r = 2 and there is a row with exactly 2 ones in V..."
if rows_with_two_ones.len() > 0 {
#[cfg(debug_assertions)]
self.first_phase_graph_substep_verify(start_row, end_row, &rows_with_two_ones);
return (Some(self.first_phase_graph_substep(start_row, end_row, &rows_with_two_ones, matrix)), r);
}
else {
// See paragraph starting "If r = 2 and there is no row with exactly 2 ones in V"
return (row_with_two_greater_than_one, r);
}
}
else {
return (Some(self.first_phase_original_degree_substep(start_row, end_row, r.unwrap())), r);
}
}
}
// See section 5.4.2.1
#[allow(non_snake_case)]
pub struct IntermediateSymbolDecoder {
A: OctetMatrix,
X: OctetMatrix,
D: Vec<Symbol>,
c: Vec<usize>,
d: Vec<usize>,
i: usize,
u: usize,
L: usize,
num_source_symbols: u32,
debug_symbol_mul_ops: u32,
debug_symbol_add_ops: u32,
debug_symbol_mul_ops_by_phase: Vec<u32>,
debug_symbol_add_ops_by_phase: Vec<u32>
}
impl IntermediateSymbolDecoder {
pub fn new(matrix: OctetMatrix, symbols: Vec<Symbol>, num_source_symbols: u32) -> IntermediateSymbolDecoder {
assert!(matrix.width() <= symbols.len());
assert_eq!(matrix.height(), symbols.len());
let mut c = Vec::with_capacity(matrix.width());
let mut d = Vec::with_capacity(symbols.len());
for i in 0..matrix.width() {
c.push(i);
}
for i in 0..symbols.len() {
d.push(i);
}
IntermediateSymbolDecoder {
A: matrix.clone(),
X: matrix,
D: symbols,
c,
d,
i: 0,
u: num_pi_symbols(num_source_symbols) as usize,
L: num_intermediate_symbols(num_source_symbols) as usize,
num_source_symbols,
debug_symbol_mul_ops: 0,
debug_symbol_add_ops: 0,
debug_symbol_mul_ops_by_phase: vec![0; 5],
debug_symbol_add_ops_by_phase: vec![0; 5]
}
}
// Returns true iff all elements in A between [start_row, end_row)
// and [start_column, end_column) are zero
#[cfg(debug_assertions)]
fn all_zeroes(&self, start_row: usize, end_row: usize, start_column: usize, end_column: usize) -> bool {
for row in start_row..end_row {
for column in start_column..end_column {
if self.A.get(row, column) != Octet::zero() {
return false;
}
}
}
return true;
}
// Performs the column swapping substep of first phase, after the row has been chosen
#[inline(never)]
fn first_phase_swap_columns_substep(&mut self, r: usize) {
let mut swapped_columns = 0;
for col in self.i..(self.A.width() - self.u) {
if self.A.get(self.i, col) != Octet::zero() {
let dest;
if swapped_columns == 0 {
dest = self.i;
}
else {
dest = self.A.width() - self.u - swapped_columns;
}
self.swap_columns(dest, col);
// Also apply to X
self.X.swap_columns(dest, col);
swapped_columns += 1;
if swapped_columns == r {
break;
}
}
}
}
// First phase (section 5.4.2.2)
#[allow(non_snake_case)]
#[inline(never)]
fn first_phase(&mut self) -> bool {
// First phase (section 5.4.2.2)
// ----------> i u <--------
// | +-----------+-----------------+---------+
// | | | | |
// | | I | All Zeros | |
// v | | | |
// i +-----------+-----------------+ U |
// | | | |
// | | | |
// | All Zeros | V | |
// | | | |
// | | | |
// +-----------+-----------------+---------+
// Figure 6: Submatrices of A in the First Phase
let mut selection_helper = FirstPhaseRowSelectionStats::new(&self.A, self.A.width() - self.u, self.num_source_symbols);
while self.i + self.u < self.L {
// Calculate r
// "Let r be the minimum integer such that at least one row of A has
// exactly r nonzeros in V."
let (chosen_row, r) = selection_helper.first_phase_selection(self.i, self.A.height(), &self.A);
if r == None {
return false;
}
let r = r.unwrap();
let chosen_row = chosen_row.unwrap();
// See paragraph beginning: "After the row is chosen in this step..."
// Reorder rows
let temp = self.i;
self.swap_rows(temp, chosen_row);
self.X.swap_rows(temp, chosen_row);
selection_helper.swap_rows(temp, chosen_row);
// Reorder columns
self.first_phase_swap_columns_substep(r);
// Zero out leading value in following rows
let temp = self.i;
for row in (self.i + 1)..self.A.height() {
let leading_value = self.A.get(row, temp);
if leading_value != Octet::zero() {
// Addition is equivalent to subtraction
let beta = &leading_value / &self.A.get(temp, temp);
self.fma_rows(temp, row, beta);
if r == 1 {
// Hot path for r == 1, since it's very common due to maximum connected
// component selection, and recompute_row() is expensive
selection_helper.eliminate_leading_value(row, &leading_value);
}
else {
selection_helper.recompute_row(row, &self.A);
}
}
}
self.i += 1;
self.u += r - 1;
selection_helper.resize(self.i, self.A.height(), self.i, self.A.width() - self.u, &self.A);
#[cfg(debug_assertions)]
self.first_phase_verify();
}
self.record_symbol_ops(0);
return true;
}
// See section 5.4.2.2. Verifies the two all-zeros submatrices and the identity submatrix
#[inline(never)]
#[cfg(debug_assertions)]
fn first_phase_verify(&self) {
for row in 0..self.i {
for col in 0..self.i {
if row == col {
assert_eq!(Octet::one(), self.A.get(row, col));
}
else {
assert_eq!(Octet::zero(), self.A.get(row, col));
}
}
}
assert!(self.all_zeroes(0, self.i, self.i, self.A.width() - self.u));
assert!(self.all_zeroes(self.i, self.A.height(), 0, self.i));
}
// Second phase (section 5.4.2.3)
#[allow(non_snake_case)]
#[inline(never)]
fn second_phase(&mut self) -> bool {
#[cfg(debug_assertions)]
self.second_phase_verify();
self.X.resize(self.i, self.i);
// Convert U_lower to row echelon form
let temp = self.i;
let size = self.u;
if !self.reduce_to_row_echelon(temp, temp, size) {
return false;
}
// Perform backwards elimination
self.backwards_elimination(temp, temp, size);
self.A.resize(self.L, self.L);
self.record_symbol_ops(1);
return true;
}
// Verifies that X is lower triangular. See section 5.4.2.3
#[inline(never)]
#[cfg(debug_assertions)]
fn second_phase_verify(&self) {
for row in 0..self.i {
for col in (row + 1)..self.i {
assert_eq!(Octet::zero(), self.X.get(row, col));
}
}
}
// Third phase (section 5.4.2.4)
#[allow(non_snake_case)]
#[inline(never)]
fn third_phase(&mut self) {
#[cfg(debug_assertions)]
self.third_phase_verify();
// A[0..i][..] = X * A[0..i][..]
self.A.mul_assign_submatrix(&self.X, self.i);
// Now apply the same operations to D.
// Note that X is lower triangular, so the row must be processed last to first
for row in (0..self.i).rev() {
if self.X.get(row, row) != Octet::one() {
self.debug_symbol_mul_ops += 1;
self.D[self.d[row]].mulassign_scalar(&self.X.get(row, row));
}
for col in 0..row {
if self.X.get(row, col) == Octet::zero() {
continue;
}
if self.X.get(row, col) == Octet::one() {
self.debug_symbol_add_ops += 1;
let (dest, temp) = get_both_indices(&mut self.D, self.d[row], self.d[col]);
*dest += temp;
}
else {
self.debug_symbol_mul_ops += 1;
self.debug_symbol_add_ops += 1;
let (dest, temp) = get_both_indices(&mut self.D, self.d[row], self.d[col]);
dest.fused_addassign_mul_scalar(temp, &self.X.get(row, col));
}
}
}
self.record_symbol_ops(2);
#[cfg(debug_assertions)]
self.third_phase_verify_end();
}
#[inline(never)]
#[cfg(debug_assertions)]
fn third_phase_verify(&self) {
for row in 0..self.A.height() {
for col in 0..self.A.width() {
if row < self.i && col >= self.A.width() - self.u {
// element is in U_upper, which can have arbitrary values at this point
continue;
}
// The rest of A should be identity matrix
if row == col {
assert_eq!(Octet::one(), self.A.get(row, col));
}
else {
assert_eq!(Octet::zero(), self.A.get(row, col));
}
}
}
}
#[inline(never)]
#[cfg(debug_assertions)]
fn third_phase_verify_end(&self) {
for row in 0..self.i {
for col in 0..self.i {
assert_eq!(self.X.get(row, col), self.A.get(row, col));
}
}
}
// Fourth phase (section 5.4.2.5)
#[allow(non_snake_case)]
#[inline(never)]
fn fourth_phase(&mut self) {
for i in 0..self.i {
for j in 0..self.u {
let b = self.A.get(i, j + self.i);
if b != Octet::zero() {
let temp = self.i;
self.fma_rows(temp + j, i, b);
}
}
}
self.record_symbol_ops(3);
#[cfg(debug_assertions)]
self.fourth_phase_verify();
}
#[inline(never)]
#[cfg(debug_assertions)]
fn fourth_phase_verify(&self) {
// ---------> i u <------
// | +-----------+--------+
// | |\ | |
// | | \ Zeros | Zeros |
// v | \ | |
// i | X \ | |
// u +---------- +--------+
// ^ | | |
// | | All Zeros | I |
// | | | |
// +-----------+--------+
// Same assertion about X being equal to the upper left of A
#[cfg(debug_assertions)]
self.third_phase_verify_end();
assert!(self.all_zeroes(0, self.i, self.A.width() - self.u, self.A.width()));
assert!(self.all_zeroes(self.A.height() - self.u, self.A.height(), 0, self.i));
for row in (self.A.height() - self.u)..self.A.height() {
for col in (self.A.width() - self.u)..self.A.width() {
if row == col {
assert_eq!(Octet::one(), self.A.get(row, col));
}
else {
assert_eq!(Octet::zero(), self.A.get(row, col));
}
}
}
}
// Fifth phase (section 5.4.2.6)
#[allow(non_snake_case)]
#[inline(never)]
fn fifth_phase(&mut self) {
// "For j from 1 to i". Note that A is 1-indexed in the spec, and ranges are inclusive,
// this is means [1, i], which is equal to [0, i)
for j in 0..self.i as usize {
if self.A.get(j, j) != Octet::one() {
let temp = self.A.get(j, j);
self.mul_row(j, Octet::one() / temp)
}
// "For l from 1 to j-1". This means the lower triangular columns, not including the
// diagonal, which is [0, j)
for l in 0..j {
let temp = self.A.get(j, l);
if temp != Octet::zero() {
self.fma_rows(l, j, temp);
}
}
}
self.record_symbol_ops(4);
#[cfg(debug_assertions)]
self.fifth_phase_verify();
}
#[inline(never)]
#[cfg(debug_assertions)]
fn fifth_phase_verify(&self) {
assert_eq!(self.L, self.A.height());
for row in 0..self.A.height() {
assert_eq!(self.L, self.A.width());
for col in 0..self.A.width() {
if row == col {
assert_eq!(Octet::one(), self.A.get(row, col));
}
else {
assert_eq!(Octet::zero(), self.A.get(row, col));
}
}
}
}
fn record_symbol_ops(&mut self, phase: usize) {
self.debug_symbol_add_ops_by_phase[phase] = self.debug_symbol_add_ops;
self.debug_symbol_mul_ops_by_phase[phase] = self.debug_symbol_mul_ops;
for i in 0..phase {
self.debug_symbol_add_ops_by_phase[phase] -= self.debug_symbol_add_ops_by_phase[i];
self.debug_symbol_mul_ops_by_phase[phase] -= self.debug_symbol_mul_ops_by_phase[i];
}
}
// Reduces the size x size submatrix, starting at row_offset and col_offset as the upper left
// corner, to row echelon form
#[inline(never)]
fn reduce_to_row_echelon(&mut self, row_offset: usize, col_offset: usize, size: usize) -> bool {
for i in 0..size {
// Swap a row with leading coefficient i into place
for j in (row_offset + i)..self.A.height() {
if self.A.get(j, col_offset + i) != Octet::zero() {
self.swap_rows(row_offset + i, j);
break;
}
}
if self.A.get(row_offset + i, col_offset + i) == Octet::zero() {
// If all following rows are zero in this column, then matrix is singular
return false;
}
// Scale leading coefficient to 1
if self.A.get(row_offset + i, col_offset + i) != Octet::one() {
let element_inverse = Octet::one() / self.A.get(row_offset + i, col_offset + i);
self.mul_row(row_offset + i, element_inverse);
}
// Zero out all following elements in i'th column
for j in (row_offset + i + 1)..self.A.height() {
if self.A.get(j, col_offset + i) != Octet::zero() {
let scalar = self.A.get(j, col_offset + i);
self.fma_rows(row_offset + i, j, scalar);
}
}
}
return true;
}
// Performs backwards elimination in a size x size submatrix, starting at
// row_offset and col_offset as the upper left corner of the submatrix
#[inline(never)]
fn backwards_elimination(&mut self, row_offset: usize, col_offset: usize, size: usize) {
// Perform backwards elimination
for i in (0..size).rev() {
// Zero out all preceding elements in i'th column
for j in 0..i {
if self.A.get(row_offset + j, col_offset + i) != Octet::zero() {
let scalar = self.A.get(row_offset + j, col_offset + i);
self.fma_rows(row_offset + i, row_offset + j, scalar);
}
}
}
}
#[allow(dead_code)]
pub fn get_symbol_mul_ops(&self) -> u32 {
self.debug_symbol_mul_ops
}
#[allow(dead_code)]
pub fn get_symbol_add_ops(&self) -> u32 {
self.debug_symbol_add_ops
}
#[allow(dead_code)]
pub fn get_symbol_mul_ops_by_phase(&self) -> Vec<u32> {
self.debug_symbol_mul_ops_by_phase.clone()
}
#[allow(dead_code)]
pub fn get_symbol_add_ops_by_phase(&self) -> Vec<u32> {
self.debug_symbol_add_ops_by_phase.clone()
}
// Helper operations to apply operations to A, also to D
fn mul_row(&mut self, i: usize, beta: Octet) {
self.debug_symbol_mul_ops += 1;
self.D[self.d[i]].mulassign_scalar(&beta);
mulassign_scalar(self.A.get_row_mut(i), &beta);
}
fn fma_rows(&mut self, i: usize, iprime: usize, beta: Octet) {
if beta == Octet::one() {
self.debug_symbol_add_ops += 1;
let (dest, temp) = get_both_indices(&mut self.D, self.d[iprime], self.d[i]);
*dest += temp;
}
else {
self.debug_symbol_add_ops += 1;
self.debug_symbol_mul_ops += 1;
let (dest, temp) = get_both_indices(&mut self.D, self.d[iprime], self.d[i]);
dest.fused_addassign_mul_scalar(&temp, &beta);
}
self.A.fma_rows(iprime, i, &beta);
}
fn swap_rows(&mut self, i: usize, iprime: usize) {
self.A.swap_rows(i, iprime);
self.d.swap(i, iprime);
}
fn swap_columns(&mut self, j: usize, jprime: usize) {
self.A.swap_columns(j, jprime);
self.c.swap(j, jprime);
}
#[inline(never)]
pub fn execute(&mut self) -> Option<Vec<Symbol>> {
if !self.first_phase() {
return None
}
if !self.second_phase() {
return None;
}
self.third_phase();
self.fourth_phase();
self.fifth_phase();
// See end of section 5.4.2.1
let mut index_mapping = ArrayMap::new(0, self.L);
for i in 0..self.L {
index_mapping.insert(self.c[i], self.d[i]);
}
let mut result = Vec::with_capacity(self.L);
for i in 0..self.L {
result.push(self.D[index_mapping.get(i)].clone());
}
Some(result)
}
}
// Fused implementation for self.inverse().mul_symbols(symbols)
// See section 5.4.2.1
pub fn fused_inverse_mul_symbols(matrix: OctetMatrix, symbols: Vec<Symbol>, num_source_symbols: u32) -> Option<Vec<Symbol>> {
IntermediateSymbolDecoder::new(matrix, symbols, num_source_symbols).execute()
}
#[cfg(test)]
mod tests {
use super::IntermediateSymbolDecoder;
2019-03-23 01:25:07 +00:00
use crate::constraint_matrix::generate_constraint_matrix;
use crate::symbol::Symbol;
use crate::systematic_constants::extended_source_block_symbols;
2019-02-19 01:02:54 +00:00
#[test]
fn operations_per_symbol() {
for elements in [10, 100].iter() {
let num_symbols = extended_source_block_symbols(*elements);
let indices: Vec<u32> = (0..num_symbols).collect();
let a = generate_constraint_matrix(num_symbols, &indices);
let symbols = vec![Symbol::zero(1); a.width()];
let mut decoder = IntermediateSymbolDecoder::new(a, symbols, num_symbols);
decoder.execute();
assert!((decoder.get_symbol_mul_ops() as f64 / num_symbols as f64) < 30.0);
assert!((decoder.get_symbol_add_ops() as f64 / num_symbols as f64) < 50.0);
}
}
}