/* * comm.cpp * * Created on: Jul 29, 2017 * Author: wangyu */ #include "common.h" #include "log.h" #include "misc.h" #include #include // static int random_number_fd=-1; int force_socket_buf = 0; int address_t::from_str(char *str) { clear(); char ip_addr_str[100]; u32_t port; mylog(log_info, "parsing address: %s\n", str); int is_ipv6 = 0; if (sscanf(str, "[%[^]]]:%u", ip_addr_str, &port) == 2) { mylog(log_info, "its an ipv6 adress\n"); inner.ipv6.sin6_family = AF_INET6; is_ipv6 = 1; } else if (sscanf(str, "%[^:]:%u", ip_addr_str, &port) == 2) { mylog(log_info, "its an ipv4 adress\n"); inner.ipv4.sin_family = AF_INET; } else { mylog(log_error, "failed to parse\n"); myexit(-1); } mylog(log_info, "ip_address is {%s}, port is {%u}\n", ip_addr_str, port); if (port > 65535) { mylog(log_error, "invalid port: %d\n", port); myexit(-1); } int ret = -100; if (is_ipv6) { ret = inet_pton(AF_INET6, ip_addr_str, &(inner.ipv6.sin6_addr)); inner.ipv6.sin6_port = htons(port); if (ret == 0) // 0 if address type doesnt match { mylog(log_error, "ip_addr %s is not an ipv6 address, %d\n", ip_addr_str, ret); myexit(-1); } else if (ret == 1) // inet_pton returns 1 on success { // okay } else { mylog(log_error, "ip_addr %s is invalid, %d\n", ip_addr_str, ret); myexit(-1); } } else { ret = inet_pton(AF_INET, ip_addr_str, &(inner.ipv4.sin_addr)); inner.ipv4.sin_port = htons(port); if (ret == 0) { mylog(log_error, "ip_addr %s is not an ipv4 address, %d\n", ip_addr_str, ret); myexit(-1); } else if (ret == 1) { // okay } else { mylog(log_error, "ip_addr %s is invalid, %d\n", ip_addr_str, ret); myexit(-1); } } return 0; } int address_t::from_str_ip_only(char *str) { clear(); u32_t type; if (strchr(str, ':') == NULL) type = AF_INET; else type = AF_INET6; ((sockaddr *)&inner)->sa_family = type; int ret; if (type == AF_INET) { ret = inet_pton(type, str, &inner.ipv4.sin_addr); } else { ret = inet_pton(type, str, &inner.ipv6.sin6_addr); } if (ret == 0) // 0 if address type doesnt match { mylog(log_error, "confusion in parsing %s, %d\n", str, ret); myexit(-1); } else if (ret == 1) // inet_pton returns 1 on success { // okay } else { mylog(log_error, "ip_addr %s is invalid, %d\n", str, ret); myexit(-1); } return 0; } char *address_t::get_str() { static char res[max_addr_len]; to_str(res); return res; } void address_t::to_str(char *s) { // static char res[max_addr_len]; char ip_addr[max_addr_len]; u32_t port; const char *ret = 0; if (get_type() == AF_INET6) { ret = inet_ntop(AF_INET6, &inner.ipv6.sin6_addr, ip_addr, max_addr_len); port = inner.ipv6.sin6_port; } else if (get_type() == AF_INET) { ret = inet_ntop(AF_INET, &inner.ipv4.sin_addr, ip_addr, max_addr_len); port = inner.ipv4.sin_port; } else { assert(0 == 1); } if (ret == 0) // NULL on failure { mylog(log_error, "inet_ntop failed\n"); myexit(-1); } port = ntohs(port); ip_addr[max_addr_len - 1] = 0; if (get_type() == AF_INET6) { sprintf(s, "[%s]:%u", ip_addr, (u32_t)port); } else { sprintf(s, "%s:%u", ip_addr, (u32_t)port); } // return res; } char *address_t::get_ip() { char ip_addr[max_addr_len]; static char s[max_addr_len]; const char *ret = 0; if (get_type() == AF_INET6) { ret = inet_ntop(AF_INET6, &inner.ipv6.sin6_addr, ip_addr, max_addr_len); } else if (get_type() == AF_INET) { ret = inet_ntop(AF_INET, &inner.ipv4.sin_addr, ip_addr, max_addr_len); } else { assert(0 == 1); } if (ret == 0) // NULL on failure { mylog(log_error, "inet_ntop failed\n"); myexit(-1); } ip_addr[max_addr_len - 1] = 0; if (get_type() == AF_INET6) { sprintf(s, "%s", ip_addr); } else { sprintf(s, "%s", ip_addr); } return s; } int address_t::from_sockaddr(sockaddr *addr, socklen_t slen) { clear(); // memset(&inner,0,sizeof(inner)); if (addr->sa_family == AF_INET6) { assert(slen == sizeof(sockaddr_in6)); // inner.ipv6= *( (sockaddr_in6*) addr ); memcpy(&inner, addr, slen); } else if (addr->sa_family == AF_INET) { assert(slen == sizeof(sockaddr_in)); // inner.ipv4= *( (sockaddr_in*) addr ); memcpy(&inner, addr, slen); } else { assert(0 == 1); } return 0; } int address_t::new_connected_udp_fd() { int new_udp_fd; new_udp_fd = socket(get_type(), SOCK_DGRAM, IPPROTO_UDP); if (new_udp_fd < 0) { mylog(log_warn, "create udp_fd error\n"); return -1; } setnonblocking(new_udp_fd); set_buf_size(new_udp_fd, socket_buf_size); mylog(log_debug, "created new udp_fd %d\n", new_udp_fd); int ret = connect(new_udp_fd, (struct sockaddr *)&inner, get_len()); if (ret != 0) { mylog(log_warn, "udp fd connect fail %d %s\n", ret, strerror(errno)); // sock_close(new_udp_fd); close(new_udp_fd); return -1; } return new_udp_fd; } bool my_ip_t::equal(const my_ip_t &b) const { // extern int raw_ip_version; if (raw_ip_version == AF_INET) { return v4 == b.v4; } else if (raw_ip_version == AF_INET6) { return memcmp(&v6, &b.v6, sizeof(v6)) == 0; } assert(0 == 1); return 0; } char *my_ip_t::get_str1() const { static char res[max_addr_len]; if (raw_ip_version == AF_INET6) { assert(inet_ntop(AF_INET6, &v6, res, max_addr_len) != 0); } else { assert(raw_ip_version == AF_INET); assert(inet_ntop(AF_INET, &v4, res, max_addr_len) != 0); } return res; } char *my_ip_t::get_str2() const { static char res[max_addr_len]; if (raw_ip_version == AF_INET6) { assert(inet_ntop(AF_INET6, &v6, res, max_addr_len) != 0); } else { assert(raw_ip_version == AF_INET); assert(inet_ntop(AF_INET, &v4, res, max_addr_len) != 0); } return res; } int my_ip_t::from_address_t(address_t tmp_addr) { if (tmp_addr.get_type() == raw_ip_version && raw_ip_version == AF_INET) { v4 = tmp_addr.inner.ipv4.sin_addr.s_addr; } else if (tmp_addr.get_type() == raw_ip_version && raw_ip_version == AF_INET6) { v6 = tmp_addr.inner.ipv6.sin6_addr; } else { assert(0 == 1); } return 0; } /* int my_ip_t::from_str(char * str) { u32_t type; if(strchr(str,':')==NULL) type=AF_INET; else type=AF_INET6; int ret; ret=inet_pton(type, str,this); if(ret==0) // 0 if address type doesnt match { mylog(log_error,"confusion in parsing %s, %d\n",str,ret); myexit(-1); } else if(ret==1) // inet_pton returns 1 on success { //okay } else { mylog(log_error,"ip_addr %s is invalid, %d\n",str,ret); myexit(-1); } return 0; }*/ #ifdef UDP2RAW_MP int init_ws() { #if defined(__MINGW32__) WORD wVersionRequested; WSADATA wsaData; int err; /* Use the MAKEWORD(lowbyte, highbyte) macro declared in Windef.h */ wVersionRequested = MAKEWORD(2, 2); err = WSAStartup(wVersionRequested, &wsaData); if (err != 0) { /* Tell the user that we could not find a usable */ /* Winsock DLL. */ printf("WSAStartup failed with error: %d\n", err); exit(-1); } /* Confirm that the WinSock DLL supports 2.2.*/ /* Note that if the DLL supports versions greater */ /* than 2.2 in addition to 2.2, it will still return */ /* 2.2 in wVersion since that is the version we */ /* requested. */ if (LOBYTE(wsaData.wVersion) != 2 || HIBYTE(wsaData.wVersion) != 2) { /* Tell the user that we could not find a usable */ /* WinSock DLL. */ printf("Could not find a usable version of Winsock.dll\n"); WSACleanup(); exit(-1); } else { printf("The Winsock 2.2 dll was found okay"); } int tmp[] = {0, 100, 200, 300, 500, 800, 1000, 2000, 3000, 4000, -1}; int succ = 0; for (int i = 1; tmp[i] != -1; i++) { if (_setmaxstdio(100) == -1) break; else succ = i; } printf(", _setmaxstdio() was set to %d\n", tmp[succ]); #endif return 0; } #endif #if defined(__MINGW32__) int inet_pton(int af, const char *src, void *dst) { struct sockaddr_storage ss; int size = sizeof(ss); char src_copy[max_addr_len + 1]; ZeroMemory(&ss, sizeof(ss)); /* stupid non-const API */ strncpy(src_copy, src, max_addr_len + 1); src_copy[max_addr_len] = 0; if (WSAStringToAddress(src_copy, af, NULL, (struct sockaddr *)&ss, &size) == 0) { switch (af) { case AF_INET: *(struct in_addr *)dst = ((struct sockaddr_in *)&ss)->sin_addr; return 1; case AF_INET6: *(struct in6_addr *)dst = ((struct sockaddr_in6 *)&ss)->sin6_addr; return 1; } } return 0; } const char *inet_ntop(int af, const void *src, char *dst, socklen_t size) { struct sockaddr_storage ss; unsigned long s = size; ZeroMemory(&ss, sizeof(ss)); ss.ss_family = af; switch (af) { case AF_INET: ((struct sockaddr_in *)&ss)->sin_addr = *(struct in_addr *)src; break; case AF_INET6: ((struct sockaddr_in6 *)&ss)->sin6_addr = *(struct in6_addr *)src; break; default: return NULL; } /* cannot direclty use &size because of strict aliasing rules */ return (WSAAddressToString((struct sockaddr *)&ss, sizeof(ss), NULL, dst, &s) == 0) ? dst : NULL; } char *get_sock_error() { static char buf[1000]; int e = WSAGetLastError(); wchar_t *s = NULL; FormatMessageW(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, e, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPWSTR)&s, 0, NULL); sprintf(buf, "%d:%S", e, s); int len = strlen(buf); while (len > 0 && (buf[len - 1] == '\r' || buf[len - 1] == '\n')) { len--; buf[len] = 0; } LocalFree(s); return buf; } int get_sock_errno() { return WSAGetLastError(); } #else char *get_sock_error() { static char buf[1000]; sprintf(buf, "%d:%s", errno, strerror(errno)); return buf; } int get_sock_errno() { return errno; } #endif u64_t get_current_time_us() { static u64_t value_fix = 0; static u64_t largest_value = 0; u64_t raw_value = (u64_t)(ev_time() * 1000 * 1000); u64_t fixed_value = raw_value + value_fix; if (fixed_value < largest_value) { value_fix += largest_value - fixed_value; } else { largest_value = fixed_value; } // printf("<%lld,%lld,%lld>\n",raw_value,value_fix,raw_value + value_fix); return raw_value + value_fix; // new fixed value } u64_t get_current_time() { return get_current_time_us() / 1000; } u64_t pack_u64(u32_t a, u32_t b) { u64_t ret = a; ret <<= 32u; ret += b; return ret; } u32_t get_u64_h(u64_t a) { return a >> 32u; } u32_t get_u64_l(u64_t a) { return (a << 32u) >> 32u; } char *my_ntoa(u32_t ip) { in_addr a; a.s_addr = ip; return inet_ntoa(a); } /* void init_random_number_fd() { random_number_fd=open("/dev/urandom",O_RDONLY); if(random_number_fd==-1) { mylog(log_fatal,"error open /dev/urandom\n"); myexit(-1); } setnonblocking(random_number_fd); }*/ #if !defined(__MINGW32__) struct random_fd_t { int random_number_fd; random_fd_t() { random_number_fd = open("/dev/urandom", O_RDONLY); if (random_number_fd == -1) { mylog(log_fatal, "error open /dev/urandom\n"); myexit(-1); } setnonblocking(random_number_fd); } int get_fd() { return random_number_fd; } } random_fd; #else struct my_random_t { std::random_device rd; std::mt19937 gen; std::uniform_int_distribution dis64; std::uniform_int_distribution dis32; std::uniform_int_distribution dis8; my_random_t() { // std::mt19937 gen_tmp(rd()); //random device is broken on mingw timespec tmp_time; clock_gettime(CLOCK_MONOTONIC, &tmp_time); long long a = ((u64_t)tmp_time.tv_sec) * 1000000000llu + ((u64_t)tmp_time.tv_nsec); std::mt19937 gen_tmp(a); gen = gen_tmp; gen.discard(700000); // magic } u64_t gen64() { return dis64(gen); } u32_t gen32() { return dis32(gen); } unsigned char gen8() { return dis8(gen); } /*int random_number_fd; random_fd_t() { random_number_fd=open("/dev/urandom",O_RDONLY); if(random_number_fd==-1) { mylog(log_fatal,"error open /dev/urandom\n"); myexit(-1); } setnonblocking(random_number_fd); } int get_fd() { return random_number_fd; }*/ } my_random; #endif u64_t get_true_random_number_64() { #if !defined(__MINGW32__) u64_t ret; int size = read(random_fd.get_fd(), &ret, sizeof(ret)); if (size != sizeof(ret)) { mylog(log_fatal, "get random number failed %d\n", size); myexit(-1); } return ret; #else return my_random.gen64(); // fake random number #endif } u32_t get_true_random_number() { #if !defined(__MINGW32__) u32_t ret; int size = read(random_fd.get_fd(), &ret, sizeof(ret)); if (size != sizeof(ret)) { mylog(log_fatal, "get random number failed %d\n", size); myexit(-1); } return ret; #else return my_random.gen32(); // fake random number #endif } u32_t get_true_random_number_nz() // nz for non-zero { u32_t ret = 0; while (ret == 0) { ret = get_true_random_number(); } return ret; } inline int is_big_endian() { int i = 1; return !*((char *)&i); } u64_t ntoh64(u64_t a) { #ifdef UDP2RAW_LITTLE_ENDIAN u32_t h = get_u64_h(a); u32_t l = get_u64_l(a); return pack_u64(ntohl(l), ntohl(h)); // return bswap_64( a); #else return a; #endif } u64_t hton64(u64_t a) { return ntoh64(a); } void write_u16(char *p, u16_t w) { *(unsigned char *)(p + 1) = (w & 0xff); *(unsigned char *)(p + 0) = (w >> 8); } u16_t read_u16(char *p) { u16_t res; res = *(const unsigned char *)(p + 0); res = *(const unsigned char *)(p + 1) + (res << 8); return res; } void write_u32(char *p, u32_t l) { *(unsigned char *)(p + 3) = (unsigned char)((l >> 0) & 0xff); *(unsigned char *)(p + 2) = (unsigned char)((l >> 8) & 0xff); *(unsigned char *)(p + 1) = (unsigned char)((l >> 16) & 0xff); *(unsigned char *)(p + 0) = (unsigned char)((l >> 24) & 0xff); } u32_t read_u32(char *p) { u32_t res; res = *(const unsigned char *)(p + 0); res = *(const unsigned char *)(p + 1) + (res << 8); res = *(const unsigned char *)(p + 2) + (res << 8); res = *(const unsigned char *)(p + 3) + (res << 8); return res; } void write_u64(char *s, u64_t a) { assert(0 == 1); } u64_t read_u64(char *s) { assert(0 == 1); return 0; } void setnonblocking(int sock) { #if !defined(__MINGW32__) int opts; opts = fcntl(sock, F_GETFL); if (opts < 0) { mylog(log_fatal, "fcntl(sock,GETFL)\n"); // perror("fcntl(sock,GETFL)"); myexit(1); } opts = opts | O_NONBLOCK; if (fcntl(sock, F_SETFL, opts) < 0) { mylog(log_fatal, "fcntl(sock,SETFL,opts)\n"); // perror("fcntl(sock,SETFL,opts)"); myexit(1); } #else int iResult; u_long iMode = 1; iResult = ioctlsocket(sock, FIONBIO, &iMode); if (iResult != NO_ERROR) printf("ioctlsocket failed with error: %d\n", iResult); #endif } /* Generic checksum calculation function */ unsigned short csum(const unsigned short *ptr, int nbytes) { // works both for big and little endian long sum; unsigned short oddbyte; short answer; sum = 0; while (nbytes > 1) { sum += *ptr++; nbytes -= 2; } if (nbytes == 1) { oddbyte = 0; *((u_char *)&oddbyte) = *(u_char *)ptr; sum += oddbyte; } sum = (sum >> 16) + (sum & 0xffff); sum = sum + (sum >> 16); answer = (short)~sum; return (answer); } unsigned short csum_with_header(char *header, int hlen, const unsigned short *ptr, int nbytes) { // works both for big and little endian long sum; unsigned short oddbyte; short answer; assert(hlen % 2 == 0); sum = 0; unsigned short *tmp = (unsigned short *)header; for (int i = 0; i < hlen / 2; i++) { sum += *tmp++; } while (nbytes > 1) { sum += *ptr++; nbytes -= 2; } if (nbytes == 1) { oddbyte = 0; *((u_char *)&oddbyte) = *(u_char *)ptr; sum += oddbyte; } sum = (sum >> 16) + (sum & 0xffff); sum = sum + (sum >> 16); answer = (short)~sum; return (answer); } int set_buf_size(int fd, int socket_buf_size) { if (force_socket_buf) { if (is_udp2raw_mp) { mylog(log_fatal, "force_socket_buf not supported in this verion\n"); myexit(-1); } // assert(0==1); #ifdef UDP2RAW_LINUX if (setsockopt(fd, SOL_SOCKET, SO_SNDBUFFORCE, &socket_buf_size, sizeof(socket_buf_size)) < 0) { mylog(log_fatal, "SO_SNDBUFFORCE fail socket_buf_size=%d errno=%s\n", socket_buf_size, strerror(errno)); myexit(1); } if (setsockopt(fd, SOL_SOCKET, SO_RCVBUFFORCE, &socket_buf_size, sizeof(socket_buf_size)) < 0) { mylog(log_fatal, "SO_RCVBUFFORCE fail socket_buf_size=%d errno=%s\n", socket_buf_size, strerror(errno)); myexit(1); } #endif } else { if (setsockopt(fd, SOL_SOCKET, SO_SNDBUF, &socket_buf_size, sizeof(socket_buf_size)) < 0) { mylog(log_fatal, "SO_SNDBUF fail socket_buf_size=%d errno=%s\n", socket_buf_size, get_sock_error()); myexit(1); } if (setsockopt(fd, SOL_SOCKET, SO_RCVBUF, &socket_buf_size, sizeof(socket_buf_size)) < 0) { mylog(log_fatal, "SO_RCVBUF fail socket_buf_size=%d errno=%s\n", socket_buf_size, get_sock_error()); myexit(1); } } return 0; } int numbers_to_char(my_id_t id1, my_id_t id2, my_id_t id3, char *&data, int &len) { static char buf[buf_len]; data = buf; my_id_t tmp = htonl(id1); memcpy(buf, &tmp, sizeof(tmp)); tmp = htonl(id2); memcpy(buf + sizeof(tmp), &tmp, sizeof(tmp)); tmp = htonl(id3); memcpy(buf + sizeof(tmp) * 2, &tmp, sizeof(tmp)); len = sizeof(my_id_t) * 3; return 0; } int char_to_numbers(const char *data, int len, my_id_t &id1, my_id_t &id2, my_id_t &id3) { if (len < int(sizeof(my_id_t) * 3)) return -1; // id1=ntohl( *((id_t*)(data+0)) ); memcpy(&id1, data + 0, sizeof(id1)); id1 = ntohl(id1); // id2=ntohl( *((id_t*)(data+sizeof(id_t))) ); memcpy(&id2, data + sizeof(my_id_t), sizeof(id2)); id2 = ntohl(id2); // id3=ntohl( *((id_t*)(data+sizeof(id_t)*2)) ); memcpy(&id3, data + sizeof(my_id_t) * 2, sizeof(id3)); id3 = ntohl(id3); return 0; } int hex_to_u32(const string &a, u32_t &output) { // string b="0x"; // b+=a; if (sscanf(a.c_str(), "%x", &output) == 1) { // printf("%s %x\n",a.c_str(),output); return 0; } mylog(log_error, "<%s> doesnt contain a hex\n", a.c_str()); return -1; } int hex_to_u32_with_endian(const string &a, u32_t &output) { // string b="0x"; // b+=a; if (sscanf(a.c_str(), "%x", &output) == 1) { output = htonl(output); // printf("%s %x\n",a.c_str(),output); return 0; } mylog(log_error, "<%s> doesnt contain a hex\n", a.c_str()); return -1; } bool larger_than_u32(u32_t a, u32_t b) { return ((i32_t(a - b)) > 0); /* u32_t smaller,bigger; smaller=min(a,b);//smaller in normal sense bigger=max(a,b); u32_t distance=min(bigger-smaller,smaller+(0xffffffff-bigger+1)); if(distance==bigger-smaller) { if(bigger==a) { return 1; } else { return 0; } } else { if(smaller==b) { return 0; } else { return 1; } } */ } bool larger_than_u16(uint16_t a, uint16_t b) { return ((i16_t(a - b)) > 0); /* uint16_t smaller,bigger; smaller=min(a,b);//smaller in normal sense bigger=max(a,b); uint16_t distance=min(bigger-smaller,smaller+(0xffff-bigger+1)); if(distance==bigger-smaller) { if(bigger==a) { return 1; } else { return 0; } } else { if(smaller==b) { return 0; } else { return 1; } }*/ } void myexit(int a) { if (enable_log_color) printf("%s\n", RESET); #ifdef UDP2RAW_LINUX if (keep_thread_running) { if (pthread_cancel(keep_thread)) { mylog(log_warn, "pthread_cancel failed\n"); } else { mylog(log_info, "pthread_cancel success\n"); } } clear_iptables_rule(); #endif exit(a); } vector string_to_vec(const char *s, const char *sp) { vector res; string str = s; char *p = strtok((char *)str.c_str(), sp); while (p != NULL) { res.push_back(p); // printf ("%s\n",p); p = strtok(NULL, sp); } /* for(int i=0;i<(int)res.size();i++) { printf("<<%s>>\n",res[i].c_str()); }*/ return res; } vector > string_to_vec2(const char *s) { vector > res; vector lines = string_to_vec(s, "\n"); for (int i = 0; i < int(lines.size()); i++) { vector tmp; tmp = string_to_vec(lines[i].c_str(), "\t "); res.push_back(tmp); } return res; } int read_file(const char *file, string &output) { const int max_len = 3 * 1024 * 1024; // static char buf[max_len+100]; string buf0; buf0.reserve(max_len + 200); char *buf = (char *)buf0.c_str(); buf[max_len] = 0; // buf[sizeof(buf)-1]=0; int fd = open(file, O_RDONLY); if (fd == -1) { mylog(log_error, "read_file %s fail\n", file); return -1; } int len = read(fd, buf, max_len); if (len == max_len) { buf[0] = 0; mylog(log_error, "%s too long,buf not large enough\n", file); return -2; } else if (len < 0) { buf[0] = 0; mylog(log_error, "%s read fail %d\n", file, len); return -3; } else { buf[len] = 0; output = buf; } return 0; } int run_command(string command0, char *&output, int flag) { if (is_udp2raw_mp) { mylog(log_fatal, "run_command not supported in this version\n"); myexit(-1); } #ifdef UDP2RAW_LINUX FILE *in; if ((flag & show_log) == 0) command0 += " 2>&1 "; const char *command = command0.c_str(); int level = (flag & show_log) ? log_warn : log_debug; if (flag & show_command) { mylog(log_info, "run_command %s\n", command); } else { mylog(log_debug, "run_command %s\n", command); } static __thread char buf[1024 * 1024 + 100]; buf[sizeof(buf) - 1] = 0; if (!(in = popen(command, "r"))) { mylog(level, "command %s popen failed,errno %s\n", command, strerror(errno)); return -1; } int len = fread(buf, 1024 * 1024, 1, in); if (len == 1024 * 1024) { buf[0] = 0; mylog(level, "too long,buf not larger enough\n"); return -2; } else { buf[len] = 0; } int ret; if ((ret = ferror(in))) { mylog(level, "command %s fread failed,ferror return value %d \n", command, ret); return -3; } // if(output!=0) output = buf; ret = pclose(in); int ret2 = WEXITSTATUS(ret); if (ret != 0 || ret2 != 0) { mylog(level, "commnad %s ,pclose returned %d ,WEXITSTATUS %d,errnor :%s \n", command, ret, ret2, strerror(errno)); return -4; } #endif return 0; } /* int run_command_no_log(string command0,char * &output) { FILE *in; command0+=" 2>&1 "; const char * command=command0.c_str(); mylog(log_debug,"run_command_no_log %s\n",command); static char buf[1024*1024+100]; buf[sizeof(buf)-1]=0; if(!(in = popen(command, "r"))){ mylog(log_debug,"command %s popen failed,errno %s\n",command,strerror(errno)); return -1; } int len =fread(buf, 1024*1024, 1, in); if(len==1024*1024) { buf[0]=0; mylog(log_debug,"too long,buf not larger enough\n"); return -2; } else { buf[len]=0; } int ret; if(( ret=ferror(in) )) { mylog(log_debug,"command %s fread failed,ferror return value %d \n",command,ret); return -3; } //if(output!=0) output=buf; ret= pclose(in); int ret2=WEXITSTATUS(ret); if(ret!=0||ret2!=0) { mylog(log_debug,"commnad %s ,pclose returned %d ,WEXITSTATUS %d,errnor :%s \n",command,ret,ret2,strerror(errno)); return -4; } return 0; }*/ // Remove preceding and trailing characters string trim(const string &str, char c) { size_t first = str.find_first_not_of(c); if (string::npos == first) { return ""; } size_t last = str.find_last_not_of(c); return str.substr(first, (last - first + 1)); } vector parse_conf_line(const string &s0) { string s = s0; s.reserve(s.length() + 200); char *buf = (char *)s.c_str(); // char buf[s.length()+200]; char *p = buf; int i = int(s.length()) - 1; int j; vector res; // strcpy(buf,(char *)s.c_str()); while (i >= 0) { if (buf[i] == ' ' || buf[i] == '\t') buf[i] = 0; else break; i--; } while (*p != 0) { if (*p == ' ' || *p == '\t') { p++; } else break; } int new_len = strlen(p); if (new_len == 0) return res; if (p[0] == '#') return res; if (p[0] != '-') { mylog(log_fatal, "line :<%s> not begin with '-' ", s.c_str()); myexit(-1); } for (i = 0; i < new_len; i++) { if (p[i] == ' ' || p[i] == '\t') { break; } } if (i == new_len) { res.push_back(p); return res; } j = i; while (p[j] == ' ' || p[j] == '\t') j++; p[i] = 0; res.push_back(p); res.push_back(p + j); return res; } int create_fifo(char *file) { #if !defined(__MINGW32__) if (mkfifo(file, 0666) != 0) { if (errno == EEXIST) { mylog(log_warn, "warning fifo file %s exist\n", file); } else { mylog(log_fatal, "create fifo file %s failed\n", file); myexit(-1); } } int fifo_fd = open(file, O_RDWR); if (fifo_fd < 0) { mylog(log_fatal, "create fifo file %s failed\n", file); myexit(-1); } struct stat st; if (fstat(fifo_fd, &st) != 0) { mylog(log_fatal, "fstat failed for fifo file %s\n", file); myexit(-1); } if (!S_ISFIFO(st.st_mode)) { mylog(log_fatal, "%s is not a fifo\n", file); myexit(-1); } setnonblocking(fifo_fd); return fifo_fd; #else mylog(log_fatal, "--fifo not supported in this version\n"); myexit(-1); return 0; #endif } /* void ip_port_t::from_u64(u64_t u64) { ip=get_u64_h(u64); port=get_u64_l(u64); } u64_t ip_port_t::to_u64() { return pack_u64(ip,port); } char * ip_port_t::to_s() { static char res[40]; sprintf(res,"%s:%d",my_ntoa(ip),port); return res; }*/ void print_binary_chars(const char *a, int len) { for (int i = 0; i < len; i++) { unsigned char b = a[i]; log_bare(log_debug, "<%02x>", (int)b); } log_bare(log_debug, "\n"); } u32_t djb2(unsigned char *str, int len) { u32_t hash = 5381; int c; int i = 0; while (c = *str++, i++ != len) { hash = ((hash << 5) + hash) ^ c; /* (hash * 33) ^ c */ } hash = htonl(hash); return hash; } u32_t sdbm(unsigned char *str, int len) { u32_t hash = 0; int c; int i = 0; while (c = *str++, i++ != len) { hash = c + (hash << 6) + (hash << 16) - hash; } // hash=htonl(hash); return hash; }