udp2raw/encrypt.cpp

589 lines
19 KiB
C++

#include "lib/aes-common.h"
#include "lib/md5.h"
#include "lib/pbkdf2-sha1.h"
#include "lib/pbkdf2-sha256.h"
#include <string.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include "encrypt.h"
#include "common.h"
#include "log.h"
// static uint64_t seq=1;
static int8_t zero_iv[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; // this prog use zero iv,you should make sure first block of data contains a random/nonce data
/****
* security of zero_iv + nonce first data block
* https://crypto.stackexchange.com/questions/5421/using-cbc-with-a-fixed-iv-and-a-random-first-plaintext-block
****/
char normal_key[16 + 100]; // generated from key_string by md5. reserved for compatiblity
const int hmac_key_len = 64; // generate 512bit long keys, use first n chars when needed
const int cipher_key_len = 64;
unsigned char hmac_key_encrypt[hmac_key_len + 100]; // key for hmac
unsigned char hmac_key_decrypt[hmac_key_len + 100]; // key for hmac
unsigned char cipher_key_encrypt[cipher_key_len + 100]; // key for aes etc.
unsigned char cipher_key_decrypt[cipher_key_len + 100]; // key for aes etc.
char gro_xor[256 + 100]; // dirty fix for gro
unordered_map<int, const char *> auth_mode_tostring = {
{auth_none, "none"},
{auth_md5, "md5"},
{auth_crc32, "crc32"},
{auth_simple, "simple"},
{auth_hmac_sha1, "hmac_sha1"},
};
unordered_map<int, const char *> cipher_mode_tostring = {
{cipher_none, "none"},
{cipher_aes128cfb, "aes128cfb"},
{cipher_aes128cbc, "aes128cbc"},
{cipher_xor, "xor"},
};
// TODO aes-gcm
auth_mode_t auth_mode = auth_md5;
cipher_mode_t cipher_mode = cipher_aes128cbc;
int is_hmac_used = 0;
int aes128cfb_old = 0;
// TODO key negotiation and forward secrecy
int my_init_keys(const char *user_passwd, int is_client) {
char tmp[1000] = "";
int len = strlen(user_passwd);
strcat(tmp, user_passwd);
strcat(tmp, "key1");
md5((uint8_t *)tmp, strlen(tmp), (uint8_t *)normal_key);
if (auth_mode == auth_hmac_sha1)
is_hmac_used = 1;
if (is_hmac_used || g_fix_gro || 1) {
unsigned char salt[400] = "";
char salt_text[400] = "udp2raw_salt1";
md5((uint8_t *)(salt_text), strlen(salt_text), salt); // TODO different salt per session
unsigned char pbkdf2_output1[400] = "";
PKCS5_PBKDF2_HMAC_SHA256((uint8_t *)user_passwd, len, salt, 16, 10000, 32, pbkdf2_output1); // TODO argon2 ?
// unsigned char pbkdf2_output2[400]="";
// PKCS5_PBKDF2_HMAC_SHA256(pbkdf2_output1,32,0,0,1, hmac_key_len*2+cipher_key_len*2,pbkdf2_output2); //stretch it
const char *info_hmac_encrypt = "hmac_key server-->client";
const char *info_hmac_decrypt = "hmac_key client-->server";
const char *info_cipher_encrypt = "cipher_key server-->client";
const char *info_cipher_decrypt = "cipher_key client-->server";
if (is_client) {
const char *tmp;
tmp = info_hmac_encrypt;
info_hmac_encrypt = info_hmac_decrypt;
info_hmac_decrypt = tmp;
tmp = info_cipher_encrypt;
info_cipher_encrypt = info_cipher_decrypt;
info_cipher_decrypt = tmp;
} else {
// nop
}
assert(hkdf_sha256_expand(pbkdf2_output1, 32, (unsigned char *)info_cipher_encrypt, strlen(info_cipher_encrypt), cipher_key_encrypt, cipher_key_len) == 0);
assert(hkdf_sha256_expand(pbkdf2_output1, 32, (unsigned char *)info_cipher_decrypt, strlen(info_cipher_decrypt), cipher_key_decrypt, cipher_key_len) == 0);
assert(hkdf_sha256_expand(pbkdf2_output1, 32, (unsigned char *)info_hmac_encrypt, strlen(info_hmac_encrypt), hmac_key_encrypt, hmac_key_len) == 0);
assert(hkdf_sha256_expand(pbkdf2_output1, 32, (unsigned char *)info_hmac_decrypt, strlen(info_hmac_decrypt), hmac_key_decrypt, hmac_key_len) == 0);
const char *gro_info = "gro";
assert(hkdf_sha256_expand(pbkdf2_output1, 32, (unsigned char *)gro_info, strlen(gro_info), (unsigned char *)gro_xor, 256) == 0);
}
print_binary_chars(normal_key, 16);
print_binary_chars((char *)hmac_key_encrypt, hmac_key_len);
print_binary_chars((char *)hmac_key_decrypt, hmac_key_len);
print_binary_chars((char *)cipher_key_encrypt, cipher_key_len);
print_binary_chars((char *)cipher_key_decrypt, cipher_key_len);
return 0;
}
/*
* this function comes from http://www.hackersdelight.org/hdcodetxt/crc.c.txt
*/
unsigned int crc32h(unsigned char *message, int len) {
int i, crc;
unsigned int byte, c;
const unsigned int g0 = 0xEDB88320, g1 = g0 >> 1,
g2 = g0 >> 2, g3 = g0 >> 3, g4 = g0 >> 4, g5 = g0 >> 5,
g6 = (g0 >> 6) ^ g0, g7 = ((g0 >> 6) ^ g0) >> 1;
i = 0;
crc = 0xFFFFFFFF;
while (i != len) { // Get next byte.
byte = message[i];
crc = crc ^ byte;
c = ((crc << 31 >> 31) & g7) ^ ((crc << 30 >> 31) & g6) ^
((crc << 29 >> 31) & g5) ^ ((crc << 28 >> 31) & g4) ^
((crc << 27 >> 31) & g3) ^ ((crc << 26 >> 31) & g2) ^
((crc << 25 >> 31) & g1) ^ ((crc << 24 >> 31) & g0);
crc = ((unsigned)crc >> 8) ^ c;
i = i + 1;
}
return ~crc;
}
/*
void sum(const unsigned char *data,int len,unsigned char* res) {
memset(res,0,sizeof(int));
for(int i=0,j=0;i<len;i++,j++)
{
if(j==4) j=0;
res[j]+=data[i];
}
return ;
}*/
void simple_hash(unsigned char *str, int len, unsigned char res[8]) // djb2+ sdbm
{
u32_t hash = 5381;
u32_t hash2 = 0;
int c;
int i = 0;
while (c = *str++, i++ != len) {
// hash = ((hash << 5) + hash) + c; /* hash * 33 + c */
hash = ((hash << 5) + hash) ^ c; /* (hash * 33) ^ c */
hash2 = c + (hash2 << 6) + (hash2 << 16) - hash2;
}
hash = htonl(hash);
hash2 = htonl(hash2);
memcpy(res, &hash, sizeof(hash));
memcpy(res + sizeof(hash), &hash2, sizeof(hash2));
}
int auth_md5_cal(const char *data, char *output, int &len) {
memcpy(output, data, len); // TODO inefficient code
md5((unsigned char *)output, len, (unsigned char *)(output + len));
len += 16;
return 0;
}
int auth_hmac_sha1_cal(const char *data, char *output, int &len) {
mylog(log_trace, "auth_hmac_sha1_cal() is called\n");
memcpy(output, data, len); // TODO inefficient code
sha1_hmac(hmac_key_encrypt, 20, (const unsigned char *)data, len, (unsigned char *)(output + len));
// use key len of 20 instead of hmac_key_len, "extra length would not significantly increase the function strength" (rfc2104)
len += 20;
return 0;
}
int auth_hmac_sha1_verify(const char *data, int &len) {
mylog(log_trace, "auth_hmac_sha1_verify() is called\n");
if (len < 20) {
mylog(log_trace, "auth_hmac_sha1_verify len<20\n");
return -1;
}
char res[20];
sha1_hmac(hmac_key_decrypt, 20, (const unsigned char *)data, len - 20, (unsigned char *)(res));
if (memcmp(res, data + len - 20, 20) != 0) {
mylog(log_trace, "auth_hmac_sha1 check failed\n");
return -2;
}
len -= 20;
return 0;
}
int auth_crc32_cal(const char *data, char *output, int &len) {
memcpy(output, data, len); // TODO inefficient code
unsigned int ret = crc32h((unsigned char *)output, len);
unsigned int ret_n = htonl(ret);
memcpy(output + len, &ret_n, sizeof(unsigned int));
len += sizeof(unsigned int);
return 0;
}
int auth_simple_cal(const char *data, char *output, int &len) {
// char res[4];
memcpy(output, data, len); // TODO inefficient code
simple_hash((unsigned char *)output, len, (unsigned char *)(output + len));
len += 8;
return 0;
}
int auth_simple_verify(const char *data, int &len) {
if (len < 8) return -1;
unsigned char res[8];
len -= 8;
simple_hash((unsigned char *)data, len, res);
if (memcmp(res, data + len, 8) != 0)
return -1;
return 0;
}
int auth_none_cal(const char *data, char *output, int &len) {
memcpy(output, data, len);
return 0;
}
int auth_md5_verify(const char *data, int &len) {
if (len < 16) {
mylog(log_trace, "auth_md5_verify len<16\n");
return -1;
}
char md5_res[16];
md5((unsigned char *)data, len - 16, (unsigned char *)md5_res);
if (memcmp(md5_res, data + len - 16, 16) != 0) {
mylog(log_trace, "auth_md5_verify md5 check failed\n");
return -2;
}
len -= 16;
return 0;
}
int auth_none_verify(const char *data, int &len) {
return 0;
}
int cipher_xor_encrypt(const char *data, char *output, int &len, char *key) {
int i, j;
for (i = 0, j = 0; i < len; i++, j++) {
if (j == 16) j = 0;
output[i] = data[i] ^ key[j];
}
return 0;
}
int cipher_xor_decrypt(const char *data, char *output, int &len, char *key) {
int i, j;
// char tmp[buf_len];
// len=len/16*16+1;
// AES128_CBC_decrypt_buffer((uint8_t *)tmp, (uint8_t *)input, len, (uint8_t *)key, (uint8_t *)iv);
// for(i=0;i<len;i++)
// input[i]=tmp[i];
for (i = 0, j = 0; i < len; i++, j++) {
if (j == 16) j = 0;
output[i] = data[i] ^ key[j];
}
return 0;
}
int padding(char *data, int &data_len, int padding_num) {
int old_len = data_len;
data_len += 1;
if (data_len % padding_num != 0) {
data_len = (data_len / padding_num) * padding_num + padding_num;
}
unsigned char *p = (unsigned char *)&data[data_len - 1];
*p = (data_len - old_len);
return 0;
}
int de_padding(const char *data, int &data_len, int padding_num) {
if (data_len == 0) return -1;
if ((uint8_t)data[data_len - 1] > padding_num) return -1;
data_len -= (uint8_t)data[data_len - 1];
if (data_len < 0) {
return -1;
}
return 0;
}
void aes_ecb_encrypt(const char *data, char *output) {
static int first_time = 1;
char *key = (char *)cipher_key_encrypt;
if (aes_key_optimize) {
if (first_time == 0)
key = 0;
else
first_time = 0;
}
AES_ECB_encrypt_buffer((uint8_t *)data, (uint8_t *)key, (uint8_t *)output);
}
void aes_ecb_encrypt1(char *data) {
char buf[16];
memcpy(buf, data, 16);
aes_ecb_encrypt(buf, data);
}
void aes_ecb_decrypt(const char *data, char *output) {
static int first_time = 1;
char *key = (char *)cipher_key_decrypt;
if (aes_key_optimize) {
if (first_time == 0)
key = 0;
else
first_time = 0;
}
AES_ECB_decrypt_buffer((uint8_t *)data, (uint8_t *)key, (uint8_t *)output);
}
void aes_ecb_decrypt1(char *data) {
char buf[16];
memcpy(buf, data, 16);
aes_ecb_decrypt(buf, data);
}
int cipher_aes128cbc_encrypt(const char *data, char *output, int &len, char *key) {
static int first_time = 1;
char buf[buf_len];
memcpy(buf, data, len); // TODO inefficient code
if (padding(buf, len, 16) < 0) return -1;
if (aes_key_optimize) {
if (first_time == 0)
key = 0;
else
first_time = 0;
}
AES_CBC_encrypt_buffer((unsigned char *)output, (unsigned char *)buf, len, (unsigned char *)key, (unsigned char *)zero_iv);
return 0;
}
int cipher_aes128cfb_encrypt(const char *data, char *output, int &len, char *key) {
static int first_time = 1;
assert(len >= 16);
char buf[buf_len];
memcpy(buf, data, len); // TODO inefficient code
if (aes_key_optimize) {
if (first_time == 0)
key = 0;
else
first_time = 0;
}
if (!aes128cfb_old) {
aes_ecb_encrypt(data, buf); // encrypt the first block
}
AES_CFB_encrypt_buffer((unsigned char *)output, (unsigned char *)buf, len, (unsigned char *)key, (unsigned char *)zero_iv);
return 0;
}
int auth_crc32_verify(const char *data, int &len) {
if (len < int(sizeof(unsigned int))) {
mylog(log_debug, "auth_crc32_verify len<%d\n", int(sizeof(unsigned int)));
return -1;
}
unsigned int ret = crc32h((unsigned char *)data, len - sizeof(unsigned int));
unsigned int ret_n = htonl(ret);
if (memcmp(data + len - sizeof(unsigned int), &ret_n, sizeof(unsigned int)) != 0) {
mylog(log_debug, "auth_crc32_verify memcmp fail\n");
return -1;
}
len -= sizeof(unsigned int);
return 0;
}
int cipher_none_encrypt(const char *data, char *output, int &len, char *key) {
memcpy(output, data, len);
return 0;
}
int cipher_aes128cbc_decrypt(const char *data, char *output, int &len, char *key) {
static int first_time = 1;
if (len % 16 != 0) {
mylog(log_debug, "len%%16!=0\n");
return -1;
}
if (aes_key_optimize) {
if (first_time == 0)
key = 0;
else
first_time = 0;
}
AES_CBC_decrypt_buffer((unsigned char *)output, (unsigned char *)data, len, (unsigned char *)key, (unsigned char *)zero_iv);
if (de_padding(output, len, 16) < 0) return -1;
return 0;
}
int cipher_aes128cfb_decrypt(const char *data, char *output, int &len, char *key) {
static int first_time = 1;
if (len < 16) return -1;
if (aes_key_optimize) {
if (first_time == 0)
key = 0;
else
first_time = 0;
}
AES_CFB_decrypt_buffer((unsigned char *)output, (unsigned char *)data, len, (unsigned char *)key, (unsigned char *)zero_iv);
if (!aes128cfb_old)
aes_ecb_decrypt1(output); // decrypt the first block
// if(de_padding(output,len,16)<0) return -1;
return 0;
}
int cipher_none_decrypt(const char *data, char *output, int &len, char *key) {
memcpy(output, data, len);
return 0;
}
int auth_cal(const char *data, char *output, int &len) {
mylog(log_trace, "auth:%d\n", auth_mode);
switch (auth_mode) {
case auth_crc32:
return auth_crc32_cal(data, output, len);
case auth_md5:
return auth_md5_cal(data, output, len);
case auth_simple:
return auth_simple_cal(data, output, len);
case auth_none:
return auth_none_cal(data, output, len);
case auth_hmac_sha1:
return auth_hmac_sha1_cal(data, output, len);
// default: return auth_md5_cal(data,output,len);//default;
default:
assert(0 == 1);
}
return -1;
}
int auth_verify(const char *data, int &len) {
mylog(log_trace, "auth:%d\n", auth_mode);
switch (auth_mode) {
case auth_crc32:
return auth_crc32_verify(data, len);
case auth_md5:
return auth_md5_verify(data, len);
case auth_simple:
return auth_simple_verify(data, len);
case auth_none:
return auth_none_verify(data, len);
case auth_hmac_sha1:
return auth_hmac_sha1_verify(data, len);
// default: return auth_md5_verify(data,len);//default
default:
assert(0 == 1);
}
return -1;
}
int cipher_encrypt(const char *data, char *output, int &len, char *key) {
mylog(log_trace, "cipher:%d\n", cipher_mode);
switch (cipher_mode) {
case cipher_aes128cbc:
return cipher_aes128cbc_encrypt(data, output, len, key);
case cipher_aes128cfb:
return cipher_aes128cfb_encrypt(data, output, len, key);
case cipher_xor:
return cipher_xor_encrypt(data, output, len, key);
case cipher_none:
return cipher_none_encrypt(data, output, len, key);
// default:return cipher_aes128cbc_encrypt(data,output,len, key);
default:
assert(0 == 1);
}
return -1;
}
int cipher_decrypt(const char *data, char *output, int &len, char *key) {
mylog(log_trace, "cipher:%d\n", cipher_mode);
switch (cipher_mode) {
case cipher_aes128cbc:
return cipher_aes128cbc_decrypt(data, output, len, key);
case cipher_aes128cfb:
return cipher_aes128cfb_decrypt(data, output, len, key);
case cipher_xor:
return cipher_xor_decrypt(data, output, len, key);
case cipher_none:
return cipher_none_decrypt(data, output, len, key);
// default: return cipher_aes128cbc_decrypt(data,output,len,key);
default:
assert(0 == 1);
}
return -1;
}
int encrypt_AE(const char *data, char *output, int &len /*,char * key*/) {
mylog(log_trace, "encrypt_AE is called\n");
char buf[buf_len];
char buf2[buf_len];
memcpy(buf, data, len);
if (cipher_encrypt(buf, buf2, len, (char *)cipher_key_encrypt) != 0) {
mylog(log_debug, "cipher_encrypt failed ");
return -1;
}
if (auth_cal(buf2, output, len) != 0) {
mylog(log_debug, "auth_cal failed ");
return -1;
}
// printf("%d %x %x\n",len,(int)(output[0]),(int)(output[1]));
// print_binary_chars(output,len);
// use encrypt-then-MAC scheme
return 0;
}
int decrypt_AE(const char *data, char *output, int &len /*,char * key*/) {
mylog(log_trace, "decrypt_AE is called\n");
// printf("%d %x %x\n",len,(int)(data[0]),(int)(data[1]));
// print_binary_chars(data,len);
if (auth_verify(data, len) != 0) {
mylog(log_debug, "auth_verify failed\n");
return -1;
}
if (cipher_decrypt(data, output, len, (char *)cipher_key_decrypt) != 0) {
mylog(log_debug, "cipher_decrypt failed \n");
return -1;
}
return 0;
}
int my_encrypt(const char *data, char *output, int &len /*,char * key*/) {
if (len < 0) {
mylog(log_trace, "len<0");
return -1;
}
if (len > max_data_len) {
mylog(log_warn, "len>max_data_len");
return -1;
}
if (is_hmac_used)
return encrypt_AE(data, output, len);
char buf[buf_len];
char buf2[buf_len];
memcpy(buf, data, len);
if (auth_cal(buf, buf2, len) != 0) {
mylog(log_debug, "auth_cal failed ");
return -1;
}
if (cipher_encrypt(buf2, output, len, normal_key) != 0) {
mylog(log_debug, "cipher_encrypt failed ");
return -1;
}
return 0;
}
int my_decrypt(const char *data, char *output, int &len /*,char * key*/) {
if (len < 0) return -1;
if (len > max_data_len) {
mylog(log_warn, "len>max_data_len");
return -1;
}
if (is_hmac_used)
return decrypt_AE(data, output, len);
if (cipher_decrypt(data, output, len, normal_key) != 0) {
mylog(log_debug, "cipher_decrypt failed \n");
return -1;
}
if (auth_verify(output, len) != 0) {
mylog(log_debug, "auth_verify failed\n");
return -1;
}
return 0;
}
int encrypt_AEAD(uint8_t *data, uint8_t *output, int &len, uint8_t *key, uint8_t *header, int hlen) {
// TODO
return -1;
}
int decrypt_AEAD(uint8_t *data, uint8_t *output, int &len, uint8_t *key, uint8_t *header, int hlen) {
// TODO
return -1;
}