
Abusing the Windows Power
Management API

vx-underground collection // ​smelly__vx​ && ​am0nsec

https://twitter.com/RtlMateusz
https://twitter.com/am0nsec

Introduction ​ by smelly__vx

Sometime in February am0n and I were discussing the ​Windows Power Management API​ on
Matrix. I cannot recall the exact details on how the conversation started. Nevertheless this
resulted in us both exploring the Windows Power Management API set and what it had in store
for us. Through this we discovered some APIs which ​allowed us to run an executable while the
machine was asleep​. This was fun. We decided to do some internet detective research and we
found very little regarding binaries running while the machine is asleep. As is tradition, ​we found
a StackOverflow question and answer saying this is impossible​.

And other questions and answers which were also wrong..
Microsoft Question: Sleep mode - are programs still running?
Superuser.com: Can a Windows PC do anything while it is sleeping?
Stackoverflow: How to keep a C++ code running when the PC is in sleep mode?
Stackoverflow: When your computer is in sleep mode, can you make it so python runs?

Interestingly, ​one guy got it right but StackOverflow complained to him​.

Anyway, as per my previous paper ​Weaponizing Windows Virtualisation​, I am not here to
discriminate against StackOverflow answers, rather I am doing this to point out that sometimes
ideas you have, which others may label as impossible, are actually indeed possible. Don’t give
up, kids.

tl;dr we can still execute instructions in light-sleep, ​S1​, and prevent the system from transitioning
into deeper stages of sleep by abusing ​SetThreadExecutionState

What this paper will discuss:
This paper will show how to ensure an application remains ​conscious​ despite the machine being
asleep. Additionally, we will briefly review some internal components regarding Windows
sleeping mechanisms.

What this paper will NOT discuss:
We do not intend for this paper to dive deep into the Windows Power Management API at​ a
firmware level (ACPI) - or any other kernel mode driver which may have a relationship to this
API set​.

Requirements:
The code used in this paper will be using C WINAPI. If you’re unfamiliar with C or the WINAPI
this paper may be hard to follow. However, if you’re persistent it shouldn’t be too bad.

https://docs.microsoft.com/en-us/windows/win32/power/power-management-functions
https://stackoverflow.com/questions/21132736/application-must-be-running-even-if-computer-goes-to-sleep-mode
https://stackoverflow.com/questions/21132736/application-must-be-running-even-if-computer-goes-to-sleep-mode
https://answers.microsoft.com/en-us/windows/forum/all/sleep-mode-are-programs-still-running/753f2b95-ff44-467e-b4c8-3562b6678426
https://superuser.com/questions/469631/can-a-windows-pc-do-anything-while-it-is-sleeping
https://stackoverflow.com/questions/57709563/how-to-keep-a-c-code-running-when-the-pc-is-in-sleep-mode
https://stackoverflow.com/questions/59835279/when-your-computer-is-in-sleep-mode-can-you-make-it-so-python-runs
https://stackoverflow.com/questions/17921104/preventing-sleep-mode-while-program-runs-c-sharp
https://vxug.fakedoma.in/papers/VXUG/Exclusive/WeaponizingWindowsVirtualization.pdf
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/system-sleeping-states
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-setthreadexecutionstate
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/acpi-driver
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/acpi-driver
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/acpi-driver

The Windows Power Management API
This API set is fairly robust and contains quite a bit of functionality, interfaces, callback routines
and structures. A lot can be said about this API, as it allows developers to work from user-mode
while interoping with ACPI drivers. As a tl;dr

Quoting MSDN​: “​The Windows operating system provides a comprehensive and system-wide
set of power management features. This enables systems to extend battery life and save
energy, reduce heat and noise, and help ensure data reliability. The power management
functions and messages retrieve the system power status, notify applications of power
management events, and notify the system of each application's power requirements.​”

That’s a pretty good summary. In regards to the machine sleeping though ​this is just the tip of
the iceberg​. There is a lot of information regarding machine sleep states, ​hibernation​, ​ACPI
drivers​, so on and so forth. We’re going to skip all of that. There is a standard in which sleep
states operate and that is where we’re going to focus. [​1​] [​2​] [​3​] [​4​] [​5​]

Following the standard of other OS’s Microsoft has documented the differences between ​its
various sleep states​ on MSDN. They illustrate this further with their ​SYSTEM_POWER_STATE
enum.

typedef​ ​enum​ _SYSTEM_POWER_STATE {
 PowerSystemUnspecified,

 PowerSystemWorking,

 PowerSystemSleeping1,

 PowerSystemSleeping2,

 PowerSystemSleeping3,

 PowerSystemHibernate,

 PowerSystemShutdown,

 PowerSystemMaximum

} SYSTEM_POWER_STATE, *PSYSTEM_POWER_STATE;

In our case, the two power states that we will focus on are: sleep modern standby (ACPI S0)
and sleep (ACPI S1).

https://docs.microsoft.com/en-us/windows/win32/power/about-power-management
https://www.sciencedirect.com/topics/computer-science/advanced-configuration-and-power-interface
https://www.sciencedirect.com/topics/computer-science/advanced-configuration-and-power-interface
https://en.wikipedia.org/wiki/Hibernation_(computing)
http://acpi.sourceforge.net/documentation/sleep.html
http://acpi.sourceforge.net/documentation/sleep.html
https://onlinehelp.ncr.com/Retail/Workstations/7613/HTML/Topics/UserGuide/5.%20Power%20Management/3-ACPI%20Sleep%20States%20(S0%20-%20S5).htm
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/system-sleeping-states
https://www.kernel.org/doc/html/v4.19/admin-guide/pm/sleep-states.html
https://www.kernel.org/doc/Documentation/power/states.txt
https://www.intel.com/content/www/us/en/support/articles/000006619/processors/intel-core-processors.html
https://docs.microsoft.com/en-us/windows/win32/power/system-power-states
https://docs.microsoft.com/en-us/windows/win32/power/system-power-states
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ne-wdm-_system_power_state

Power States Modification Handling
Depending on the power state the system will enter on, Windows will suspend the threads of
running processes and save volatile memory onto the disk. If running applications and drivers
are not alerted of the power state transition there is a high probability of uncontrolled and
unintended behaviours which might lead to the crash of applications, or worse, the system.

Windows offers different solutions to this issue. The first being a User32 implementation using
RegisterPowerSettingNotification​, which requires a recipient, typically in the form of a user
created callback routine via ​RegisterClassEx​ in conjunction with ​CreateWindowEx​.

Alternatively, you can use the eerily similar Powrprof implementation
PowerSettingRegisterNotification​ which does not require an invocation of RegisterClassEx and
CreateWindowEx. Instead, you must define your callback routine via the 3rd parameter
Recipient ​which will be a pointer to a ​DEVICE_NOTIFY_SUBSCRIBE_PARAMETERS
structure.

Either way, both callback routines will receive a message event from the OS when the OS
power state has changed. In the event if you use the User32 RegisterPowerSettingNotification
the event will be ​WM_POWERBROADCAST​. If you go the PowerSettingRegisterNotification
route the event will be ​PBT_POWERSETTINGCHANGE​.

It should probably be noted that the User32 function RegisterPowerSettingNotification is actually
an API forward to PowerSettingRegisterNotification. Both achieve the same result.

Finally, to conclude this segment, for quite some time Windows has provided options to
developers to not only detect the machine entering sleep, but also ​prevent it from entering
sleep​. To elaborate on this further: It is possible to abuse the function ​SetThreadExecutionState
to allow the machine to enter light-sleep but not the ​sleep state traditionally described such as
the processor core and bus stopping​ and ​system contexts lost​. This can be used for sandbox
evasion, debugger evasion, and performing operations users would be unable to see.

https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-registerpowersettingnotification
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-registerclassexa
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-createwindowexa
https://docs.microsoft.com/en-us/windows/win32/api/powersetting/nf-powersetting-powersettingregisternotification
https://docs.microsoft.com/en-us/windows/win32/api/powrprof/ns-powrprof-device_notify_subscribe_parameters
https://docs.microsoft.com/en-us/windows/win32/power/wm-powerbroadcast
https://docs.microsoft.com/en-us/windows/win32/power/pbt-powersettingchange
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-setthreadexecutionstate
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/system-sleeping-states#system-power-state-s2
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/system-sleeping-states#system-power-state-s2
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/system-sleeping-states#system-power-state-s3

The code

This proof-of-concept demonstrates how to ensure your executable remains active while in
sleep state S1 and prevent the machine from transitioning into deeper states of sleep (S2 or
greater). This code also uses the ​powrprof​ and ​powersetting​ headers. However, to avoid
making compilation a hassle the code dynamically imports the functionality from powrprof.dll.
Here is a quick high-level overview of the code:

1. Define both the powrprof functions we will need to dynamically import. In this case we’re
importing​ PowerSettingRegisterNotification​ and its sister function
PowerSettingUnregisterNotification
typedef​ ​DWORD​(WINAPI* POWERSETTINGREGISTERNOTIFICATION)(LPCGUID, DWORD, HANDLE, PHPOWERNOTIFY);
typedef​ ​DWORD​(WINAPI* POWERSETTINGUNREGISTERNOTIFICATION)(HPOWERNOTIFY)

2. Attempt to dynamically load both functions. If we are unable to, go to our failure routine

HMODULE hLibrary;

POWERSETTINGREGISTERNOTIFICATION _PowerSettingRegisterNotification = ​NULL​;
POWERSETTINGUNREGISTERNOTIFICATION _PowerSettingUnregisterNotification = ​NULL​;

hLibrary = LoadLibrary(​L"powrprof.dll"​);
if​ (hLibrary == ​NULL​)

goto​ FAILURE;

_PowerSettingRegisterNotification = (POWERSETTINGREGISTERNOTIFICATION)GetProcAddress(hLibrary,

 ​"PowerSettingRegisterNotification"​);

_PowerSettingUnregisterNotification = (POWERSETTINGUNREGISTERNOTIFICATION)GetProcAddress(hLibrary,

 ​"PowerSettingUnregisterNotification"​);

if​ (!_PowerSettingRegisterNotification || !_PowerSettingUnregisterNotification)

goto​ FAILURE;

https://docs.microsoft.com/en-us/windows/win32/api/powersetting/nf-powersetting-powersettingregisternotification
https://docs.microsoft.com/en-us/windows/win32/api/powersetting/nf-powersetting-powersettingunregisternotification

3. Initialise a ​DEVICE_NOTIFY_SUBSCRIBE_PARAMETERS​ with an established callback
routine to handle system power change notifications. Our callback routine is a
DEVICE_NOTIFY_CALLBACK_ROUTINE​ callback function.

ULONG CALLBACK ​HandlePowerNotifications​(PVOID Context, ULONG Type, PVOID Setting);

DEVICE_NOTIFY_SUBSCRIBE_PARAMETERS NotificationsParameters;

NotificationsParameters.Callback = HandlePowerNotifications;

NotificationsParameters.Context = ​NULL​;

(Continued below)

https://docs.microsoft.com/en-us/windows/win32/api/powrprof/ns-powrprof-device_notify_subscribe_parameters
https://docs.microsoft.com/en-us/windows/win32/api/powrprof/nc-powrprof-device_notify_callback_routine

4. Create a callback routine to handle incoming power change notifications. Our callback will
typecast the incoming system message to type ​PPOWERBROADCAST_SETTING​. Additionally,
if the message is of ​Type​ ​PBT_POWERSETTINGCHANGE​ and our typecasted
PPOWERBROADCAST_SETTING member ​PowerSetting ​is equal to
GUID_CONSOLE_DISPLAY_STATE​ then we further evaluate the
PPOWERBROADCAST_SETTING member ​Data ​to determine which S-level we’re transitioning
toward. When the PowerSetting member is of type GUID_CONSOLE_DISPLAY_STATE our
Data member will be one of the follow:

1. 0x0 - Display is off
2. 0x1 - Display is on
3. 0x2 - Display is dimmed

Finally, in the event our Data member is 0 or 2 we wait 10 seconds for padding. ​Each
application is given 2 seconds to take appropriate action on power setting notifications​.

Note: per MSDN spec Windows 8 and higher should use GUID_CONSOLE_DISPLAY_STATE not MONITOR_DISPLAY_STATE

ULONG CALLBACK ​HandlePowerNotifications​(PVOID Context, ULONG Type, PVOID Setting)
{

PPOWERBROADCAST_SETTING PowerSettings = (PPOWERBROADCAST_SETTING)Setting;

if​ (Type == PBT_POWERSETTINGCHANGE &&
 PowerSettings->PowerSetting == GUID_CONSOLE_DISPLAY_STATE)

{

switch​ (*PowerSettings->Data)
{

case​ ​0​:
case​ ​2​:
{

Sleep(​10000​);
MessageBoxW(​NULL​, ​L"Spooky Payload"​, ​L""​, MB_OK);
break​;

}

case​ ​1​:
{

Sleep(​1​);
break​;

}

default​:
{

break​;
}

}

}

return​ ERROR_SUCCESS;
}

https://docs.microsoft.com/en-us/windows/win32/api/winuser/ns-winuser-powerbroadcast_setting
https://docs.microsoft.com/en-us/windows/win32/power/pbt-powersettingchange
https://docs.microsoft.com/en-us/windows/win32/power/power-setting-guids
https://docs.microsoft.com/en-us/windows/win32/power/pbt-apmsuspend#remarks
https://docs.microsoft.com/en-us/windows/win32/power/pbt-apmsuspend#remarks

5. Register our callback routine with the OS. Specify we’re wanting to receive messages of type
GUID_CONSOLE_DISPLAY_STATE​ per bulletin 4

if​ (_PowerSettingRegisterNotification(&GUID_CONSOLE_DISPLAY_STATE, DEVICE_NOTIFY_CALLBACK,
 (HANDLE)&NotificationsParameters, &hNotificationRegister) != ERROR_SUCCESS)

{

 ​goto​ FAILURE;
}

6. Specify our applications thread execution state so it remains active despite power setting
changes

if​ (SetThreadExecutionState(ES_AWAYMODE_REQUIRED | ES_CONTINUOUS | ES_SYSTEM_REQUIRED) == ​NULL​)
 ​goto​ FAILURE;

7. Infinitely loop to receive system notifications. If in the event our application escapes the loop
unregister our application from power setting notifications.

while​ (​1​){ Sleep(​100​); }

if​ (hNotificationRegister)
 _PowerSettingUnregisterNotification(hNotificationRegister);

return​ ERROR_SUCCESS;

8. Our failure routine

FAILURE:

dwError = GetLastError();

if​ (hNotificationRegister)
_PowerSettingUnregisterNotification(hNotificationRegister);

return​ dwError;

https://docs.microsoft.com/en-us/windows/win32/power/power-setting-guids

