
1

From a C project, through assembly, to shellcode
v 1.2

by hasherezade for @vxunderground

special thanks to Duchy for testing

Table of Contents

Introduction 2

Prior work and motivations 2

Shellcode - general principles 3

Position-independent code 3

Calling API without the Import Table 4

Wrapping up: the header 9

Writing and compiling code in assembly 12

Compiling a C project - step by step 14

From a C project to the shellcode 16

The core idea 16

Preparing the C project 16

Refactoring the assembly 24

Extended example - a demo server 29

Building 34

Running 34

Testing 34

Conclusion 35

https://twitter.com/hasherezade
https://twitter.com/vxunderground
https://twitter.com/neduchaljan

2

Introduction

Malware authors (as well as exploit developers) often use in their work pieces of a
standalone, position independent code - referred to as shellcodes. This type of code can be
injected very easily in any fitting place of the memory, and executed immediately - without
a need for external loaders. Although shellcode offers many advantages for researchers
(and malware authors), crafting it is tedious. Shellcodes must follow a very different set of
principles than the formats that are the usual output of a compiler. That’s why, usually
people write them in assembly in order to have full control over the format of the generated
output.

Creating shellcodes in assembly is the surest and the most accurate way. Yet, it is tedious
and error-prone. That’s why various researchers come up with their own ideas of
simplifying the whole process, and taking advantage of the C compiler rather than crafting
full shellcode by hand in assembly. In this document I will share my experience about it, and
the method I use for those purposes.

This paper is intended to be beginner-friendly, so I described in detail some well-known,
generic techniques around shellcode creation. In the first paragraphs, I show some general
principles that shellcodes need to follow, and the reasoning behind the presented method.
Then, I provide step-by-step walk-troughs and examples of shellcodes created with its help.

With the presented method, we can avoid writing the assembly full by ourselves - yet, we
will be able to conveniently edit the generated assembly. We don’t lose the advantages of
handcrafting the shellcode, yet we skip the tedious part.

Prior work and motivations

The idea of creating shellcodes from C code is not new.

In “The Rootkit Arsenal - Second Edition” from 2012 Bill Blunden explains his way of
creating shellcodes from C code (Chapter 10: Building Shellcode in C). A similar method was
described by Matt Graeber (Mattifestation) in his “Writing Optimized Windows Shellcode in
C” article. In both cases, the shellcode was created directly from a C code, and the whole
idea was related to changing the compiler settings in order to create a PE file from which
we are able to extract the buffer of independent code.

Still, what I missed in those methods, were the advantages of the shellcode written in pure
assembly from scratch. In the above cases, we could only get the final code - but we had no
direct control on the generated assembly, and no opportunity to interact with it or do
changes.

What I was looking for was a method that will connect the best of both worlds: allowing to
omit the tedious and error-prone part of writing the assembly. Yet, generating the assembly
that I could freely tinker with, and finally use to generate my shellcode.

https://www.jblearning.com/catalog/productdetails/9781449626365
https://twitter.com/mattifestation
http://www.exploit-monday.com/2013/08/writing-optimized-windows-shellcode-in-c.html
http://www.exploit-monday.com/2013/08/writing-optimized-windows-shellcode-in-c.html

3

Shellcode - general principles

In case of PE format we just write a code and don’t have to worry how it is loaded: Windows
Loader will do it. It is different when we write shellcode. We cannot rely on the
conveniences provided by PE format and Windows Loader:

• No sections

• No Data Directories (imports, relocations)

We have only the code to provide everything we need…

Overview of some important differences between the PE and the shellcode:

Feature PE file Shellcode

Loading via Windows Loader;
running new EXE
triggers creation of a
new process

Custom, simplified; must parasite on
existing process (i.e. via code injection +
thread injection), or appended to an
existing PE (i.e. in case of a virus)

Composition Sections with specific
access rights, carrying
various elements (code,
data, resources, etc)

All in one memory area
(read,write,execute)

Relocation to the
load base

Defined by Relocation
Table, applied by
Windows Loader

Custom; position-independent code

Access to system
API (Imports
loading)

Defined by the Import
Table, applied by
Windows Loader

Custom: retrieving imports via PEB lookup;
no IAT, or simplified

Position-independent code

In the case of PE files, we have a relocation table that is used by Windows Loader to shift all
the addresses accordingly to the base where the executable was loaded in the memory. It is
done automatically at runtime.

In case of shellcodes, we cannot take advantage of this feature - so we just need to write the
code in the way that no relocation will be required. A code that follows those principles is
called a Position Independent Code (PIC).

We create a position independent code by using only addresses that are relative to the
current instruction pointer. We can use short jumps, long jumps, calls to local functions -
because all of them are relative.

Let assume, as one of the steps of creating the shellcode, we will create a PE which’s full
code sections is a Position-Independent Code. To achieve this, we cannot use any addresses
that reference data from other PE sections. If we want to use any strings, or other data, we
must inline it in the code.

4

Calling API without the Import Table

In case of PE, all the API calls that we referenced in the code will be gathered in the Import
Table. Creation of the Import Table is done by the linker. Then, resolving the Import Table
is done at runtime. All is handled by default.

In case of shellcodes we no longer can access the Import Table, so we need to take care of
resolving the APIs by ourselves.

In order to retrieve the API functions that we use in our shellcode, we will take advantage of
the PEB (Process Environment Block - one of the system structures that is created at
process’ runtime). Once our shellcode is injected into a process, we will retrieve the PEB of
the target, and then use it to search for DLLs that are loaded in the process address space.
We fetch Ntdll.dll or Kernel32.dll in order to resolve the rest of the imports. Ntdll.dll is
loaded in every process at its early stage. Kernel32.dll is loaded in majority of the processes
after the initialization – so we can safely assume that it will be loaded in the process of our
interest. Once we retrieve any of them, we can use it to load other needed DLLs.

Overview of retrieving Imports for a shellcode:

1. Get the PEB address

2. Via PEB->Ldr->InMemoryOrderModuleList, find:

– kernel32.dll (in majority of the processes it is loaded by default)

– or ntdll.dll (if we want to use low-level equivalents of Import loading functions)

3. Walk through exports table of kernel32 (or ntdll) to find addresses of:

– kernel32.LoadLibraryA (eventually: ntdll.LdrLoadDll)

– kernel32.GetProcAddress (eventually: ntdll.LdrGetProcedureAddress)

4. Use LoadLibraryA (or LdrLoadDll) to load a needed DLL

5. Use GetProcAddress (or LdrGetProcedureAddress) to retrieve a needed function

5

Retrieving PEB

Fortunately, PEB can be retrieved easily by pure assembly. A pointer to PEB is one of the
fields of another structure: TEB (Thread Environment Block).

The TEB is pointed by a segment register: FS in case of a 32 bit process, and GS in case of 64
bit process.

process bitness 32 bit 64 bit

pointer to TEB FS register GS register

offset to PEB from TEB 0x30 0x60

In order to get PEB from assembly, we just fetch a field at a particular offset relative to the
segment register pointing to TEB. If we implement it in C, it looks in the following way:

 PPEB peb = NULL;
#if defined(_WIN64)
 peb = (PPEB)__readgsqword(0x60);
#else
 peb = (PPEB)__readfsdword(0x30);
#endif

6

PEB-based DLL lookup

One of the PEB’s fields is a linked list of all the DLLs that are loaded in the memory of the
process:

We will walk through this list, till we find the DLL we are looking for.

At this point we need a DLL that will help us to resolve other APIs that we want to import.
We can do it with the help of Kernel32.dll (or eventually Ntdll.dll, yet, Kernel32 is more
handy).

The whole process of retrieving a DLL with chosen name by DLL lookup is demonstrated in
the following C code:

7

#include <Windows.h>

#ifndef __NTDLL_H__

#ifndef TO_LOWERCASE
#define TO_LOWERCASE(out, c1) (out = (c1 <= 'Z' && c1 >= 'A') ? c1 = (c1 - 'A') + 'a': c1)
#endif

typedef struct _UNICODE_STRING
{
 USHORT Length;
 USHORT MaximumLength;
 PWSTR Buffer;

} UNICODE_STRING, * PUNICODE_STRING;

typedef struct _PEB_LDR_DATA
{
 ULONG Length;
 BOOLEAN Initialized;
 HANDLE SsHandle;
 LIST_ENTRY InLoadOrderModuleList;
 LIST_ENTRY InMemoryOrderModuleList;
 LIST_ENTRY InInitializationOrderModuleList;
 PVOID EntryInProgress;

} PEB_LDR_DATA, * PPEB_LDR_DATA;

//here we don't want to use any functions imported form extenal modules

typedef struct _LDR_DATA_TABLE_ENTRY {
 LIST_ENTRY InLoadOrderModuleList;
 LIST_ENTRY InMemoryOrderModuleList;
 LIST_ENTRY InInitializationOrderModuleList;
 void* BaseAddress;
 void* EntryPoint;
 ULONG SizeOfImage;
 UNICODE_STRING FullDllName;
 UNICODE_STRING BaseDllName;
 ULONG Flags;
 SHORT LoadCount;
 SHORT TlsIndex;
 HANDLE SectionHandle;
 ULONG CheckSum;
 ULONG TimeDateStamp;
} LDR_DATA_TABLE_ENTRY, * PLDR_DATA_TABLE_ENTRY;

typedef struct _PEB
{
 BOOLEAN InheritedAddressSpace;
 BOOLEAN ReadImageFileExecOptions;
 BOOLEAN BeingDebugged;
 BOOLEAN SpareBool;
 HANDLE Mutant;

 PVOID ImageBaseAddress;
 PPEB_LDR_DATA Ldr;

 // [...] this is a fragment, more elements follow here

8

} PEB, * PPEB;

#endif //__NTDLL_H__

inline LPVOID get_module_by_name(WCHAR* module_name)
{
 PPEB peb = NULL;
#if defined(_WIN64)
 peb = (PPEB)__readgsqword(0x60);
#else
 peb = (PPEB)__readfsdword(0x30);
#endif
 PPEB_LDR_DATA ldr = peb->Ldr;
 LIST_ENTRY list = ldr->InLoadOrderModuleList;

 PLDR_DATA_TABLE_ENTRY Flink = *((PLDR_DATA_TABLE_ENTRY*)(&list));
 PLDR_DATA_TABLE_ENTRY curr_module = Flink;

 while (curr_module != NULL && curr_module->BaseAddress != NULL) {
 if (curr_module->BaseDllName.Buffer == NULL) continue;
 WCHAR* curr_name = curr_module->BaseDllName.Buffer;

 size_t i = 0;
 for (i = 0; module_name[i] != 0 && curr_name[i] != 0; i++) {
 WCHAR c1, c2;
 TO_LOWERCASE(c1, module_name[i]);
 TO_LOWERCASE(c2, curr_name[i]);
 if (c1 != c2) break;
 }
 if (module_name[i] == 0 && curr_name[i] == 0) {
 //found
 return curr_module->BaseAddress;
 }
 // not found, try next:
 curr_module = (PLDR_DATA_TABLE_ENTRY)curr_module->InLoadOrderModuleList.Flink;
 }
 return NULL;
}

Exports lookup

Once we retrieved the base of Kernel32.dll, we still need to retrieve addresses of the needed
functions: LoadLibraryA and GetProcAddress. We will do it by exports lookup.

First we need to fetch the Exports Table from the Data Directory of the found DLL. Then we
walk through all the functions exported by names, till we find the name of our interest. We
fetch the RVA associated with the name, and add the module base, to get the absolute
address (VA).

9

The exports lookup function:

inline LPVOID get_func_by_name(LPVOID module, char* func_name)
{
 IMAGE_DOS_HEADER* idh = (IMAGE_DOS_HEADER*)module;
 if (idh->e_magic != IMAGE_DOS_SIGNATURE) {
 return NULL;
 }
 IMAGE_NT_HEADERS* nt_headers = (IMAGE_NT_HEADERS*)((BYTE*)module + idh->e_lfanew);
 IMAGE_DATA_DIRECTORY* exportsDir = &(nt_headers-
>OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT]);
 if (exportsDir->VirtualAddress == NULL) {
 return NULL;
 }

 DWORD expAddr = exportsDir->VirtualAddress;
 IMAGE_EXPORT_DIRECTORY* exp = (IMAGE_EXPORT_DIRECTORY*)(expAddr + (ULONG_PTR)module);
 SIZE_T namesCount = exp->NumberOfNames;

 DWORD funcsListRVA = exp->AddressOfFunctions;
 DWORD funcNamesListRVA = exp->AddressOfNames;
 DWORD namesOrdsListRVA = exp->AddressOfNameOrdinals;

 //go through names:
 for (SIZE_T i = 0; i < namesCount; i++) {
 DWORD* nameRVA = (DWORD*)(funcNamesListRVA + (BYTE*)module + i * sizeof(DWORD));
 WORD* nameIndex = (WORD*)(namesOrdsListRVA + (BYTE*)module + i * sizeof(WORD));
 DWORD* funcRVA = (DWORD*)(funcsListRVA + (BYTE*)module + (*nameIndex) * sizeof(DWORD));

 LPSTR curr_name = (LPSTR)(*nameRVA + (BYTE*)module);
 size_t k = 0;
 for (k = 0; func_name[k] != 0 && curr_name[k] != 0; k++) {
 if (func_name[k] != curr_name[k]) break;
 }
 if (func_name[k] == 0 && curr_name[k] == 0) {
 //found
 return (BYTE*)module + (*funcRVA);
 }
 }
 return NULL;
}

Wrapping up: the header

We will gather all the above code in a header peb_lookup.h (available here), that we can
include to our projects where we want to make use of the PEB lookup.

#pragma once
#include <Windows.h>

#ifndef __NTDLL_H__

#ifndef TO_LOWERCASE
#define TO_LOWERCASE(out, c1) (out = (c1 <= 'Z' && c1 >= 'A') ? c1 = (c1 - 'A') + 'a': c1)
#endif

https://github.com/hasherezade/masm_shc/blob/master/demos/peb_lookup.h

10

typedef struct _UNICODE_STRING
{
 USHORT Length;
 USHORT MaximumLength;
 PWSTR Buffer;

} UNICODE_STRING, * PUNICODE_STRING;

typedef struct _PEB_LDR_DATA
{
 ULONG Length;
 BOOLEAN Initialized;
 HANDLE SsHandle;
 LIST_ENTRY InLoadOrderModuleList;
 LIST_ENTRY InMemoryOrderModuleList;
 LIST_ENTRY InInitializationOrderModuleList;
 PVOID EntryInProgress;

} PEB_LDR_DATA, * PPEB_LDR_DATA;

//here we don't want to use any functions imported form external modules

typedef struct _LDR_DATA_TABLE_ENTRY {
 LIST_ENTRY InLoadOrderModuleList;
 LIST_ENTRY InMemoryOrderModuleList;
 LIST_ENTRY InInitializationOrderModuleList;
 void* BaseAddress;
 void* EntryPoint;
 ULONG SizeOfImage;
 UNICODE_STRING FullDllName;
 UNICODE_STRING BaseDllName;
 ULONG Flags;
 SHORT LoadCount;
 SHORT TlsIndex;
 HANDLE SectionHandle;
 ULONG CheckSum;
 ULONG TimeDateStamp;
} LDR_DATA_TABLE_ENTRY, * PLDR_DATA_TABLE_ENTRY;

typedef struct _PEB
{
 BOOLEAN InheritedAddressSpace;
 BOOLEAN ReadImageFileExecOptions;
 BOOLEAN BeingDebugged;
 BOOLEAN SpareBool;
 HANDLE Mutant;

 PVOID ImageBaseAddress;
 PPEB_LDR_DATA Ldr;

 // [...] this is a fragment, more elements follow here

} PEB, * PPEB;

#endif //__NTDLL_H__

11

inline LPVOID get_module_by_name(WCHAR* module_name)
{
 PPEB peb = NULL;
#if defined(_WIN64)
 peb = (PPEB)__readgsqword(0x60);
#else
 peb = (PPEB)__readfsdword(0x30);
#endif
 PPEB_LDR_DATA ldr = peb->Ldr;
 LIST_ENTRY list = ldr->InLoadOrderModuleList;

 PLDR_DATA_TABLE_ENTRY Flink = *((PLDR_DATA_TABLE_ENTRY*)(&list));
 PLDR_DATA_TABLE_ENTRY curr_module = Flink;

 while (curr_module != NULL && curr_module->BaseAddress != NULL) {
 if (curr_module->BaseDllName.Buffer == NULL) continue;
 WCHAR* curr_name = curr_module->BaseDllName.Buffer;

 size_t i = 0;
 for (i = 0; module_name[i] != 0 && curr_name[i] != 0; i++) {
 WCHAR c1, c2;
 TO_LOWERCASE(c1, module_name[i]);
 TO_LOWERCASE(c2, curr_name[i]);
 if (c1 != c2) break;
 }
 if (module_name[i] == 0 && curr_name[i] == 0) {
 //found
 return curr_module->BaseAddress;
 }
 // not found, try next:
 curr_module = (PLDR_DATA_TABLE_ENTRY)curr_module->InLoadOrderModuleList.Flink;
 }
 return NULL;
}

inline LPVOID get_func_by_name(LPVOID module, char* func_name)
{
 IMAGE_DOS_HEADER* idh = (IMAGE_DOS_HEADER*)module;
 if (idh->e_magic != IMAGE_DOS_SIGNATURE) {
 return NULL;
 }
 IMAGE_NT_HEADERS* nt_headers = (IMAGE_NT_HEADERS*)((BYTE*)module + idh->e_lfanew);
 IMAGE_DATA_DIRECTORY* exportsDir = &(nt_headers-
>OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT]);
 if (exportsDir->VirtualAddress == NULL) {
 return NULL;
 }

 DWORD expAddr = exportsDir->VirtualAddress;
 IMAGE_EXPORT_DIRECTORY* exp = (IMAGE_EXPORT_DIRECTORY*)(expAddr + (ULONG_PTR)module);
 SIZE_T namesCount = exp->NumberOfNames;

 DWORD funcsListRVA = exp->AddressOfFunctions;
 DWORD funcNamesListRVA = exp->AddressOfNames;
 DWORD namesOrdsListRVA = exp->AddressOfNameOrdinals

12

 //go through names:
 for (SIZE_T i = 0; i < namesCount; i++) {
 DWORD* nameRVA = (DWORD*)(funcNamesListRVA + (BYTE*)module + i * sizeof(DWORD));
 WORD* nameIndex = (WORD*)(namesOrdsListRVA + (BYTE*)module + i * sizeof(WORD));
 DWORD* funcRVA = (DWORD*)(funcsListRVA + (BYTE*)module + (*nameIndex) * sizeof(DWORD));

 LPSTR curr_name = (LPSTR)(*nameRVA + (BYTE*)module);
 size_t k = 0;
 for (k = 0; func_name[k] != 0 && curr_name[k] != 0; k++) {
 if (func_name[k] != curr_name[k]) break;
 }
 if (func_name[k] == 0 && curr_name[k] == 0) {
 //found
 return (BYTE*)module + (*funcRVA);
 }
 }
 return NULL;
}

Writing and compiling code in assembly

As mentioned before, the typical approach for writing shellcodes is to do it in assembly.

When we write assembly, we first have to choose the assembler that we want to compile
the code with. This choice imposes some subtle differences on the syntax that we have to
use.

The most popular assembler for Windows is MASM - which is a part of Visual Studio, and
comes in two versions: 32 bit (ml.exe) and 64 bit (ml64.exe). The output generated by
MASM is an object file that can be linked to a PE. Let assume we have a simple example
written in 32 bit MASM that displays a message box:

.386

.model flat

extern _MessageBoxA@16:near
extern _ExitProcess@4:near

.data
msg_title db "Demo!", 0
msg_content db "Hello World!", 0

.code
main proc
 push 0
 push 0
 push offset msg_title
 push offset msg_content
 push 0
 call _MessageBoxA@16
 push 0
 call _ExitProcess@4
main endp
end

13

We will compile this code by:

ml /c demo32.asm

And then we can link it by a default Visual Studio linker:

link demo32.obj /subsystem:console /defaultlib:kernel32.lib
/defaultlib:user32.lib /entry:main /out:demo32_masm.exe

Sometimes we can also deploy compiling and linking in one go, by using it without any
parameters:

ml demo32.asm

MASM is the default assembler for Windows. However, the most popular choice to create
shellcodes is another assembler: YASM (the successor of NASM). It is a free, independent
assembler for multiple platforms. It can be used to create PE files just like MASM. The
syntax of YASM is a bit different. Let assume we have an analogical example written in 32
bit YASM:

bits 32

extern _MessageBoxA@16:proc
extern _ExitProcess@4:proc

msg_title db "Demo!", 0
msg_content db "Hello World!", 0

global main

main:
 push 0
 push 0
 push msg_title
 push msg_content
 push 0
 call _MessageBoxA@16
 push 0
 call _ExitProcess@4

We can compile it by:

yasm -f win32 demo32.asm -o demo32.obj

And, similarly to the MASM code, link it with Visual Studio linker (or any other linker of our
choice):

link demo32.obj /defaultlib:user32.lib /defaultlib:kernel32.lib
/subsystem:windows /entry:main /out:demo32_yasm.exe

In contrast to MASM, YASM can be also used to compile the code into a binary file, rather
than to the object file. So, we can get a ready to use binary buffer with the shellcode.
Example of compiling to a binary file:

yasm -f bin demo.asm

14

Note that none of the above examples can be compiled to a shellcode, because they have
external dependencies - so they don’t follow the shellcode principles. Yet we could refactor
them into a shellcode by removing the dependencies.

The method that is going to be presented in this paper uses MASM. The reason behind
this choice is simple: if we generate the assembly code from the C file with the help of Visual
Studio C compiler, the result will be in the MASM syntax. In contrast to YASM, cannot set it
to output the shellcode directly: we will need to manually cut out the code from the PE. As
we will see, although it may seem like a minor inconvenience, it has its pros, such as
simplifies testing.

Compiling a C project - step by step

Nowadays, most of the people compile their code using integrated environments such as
Visual Studio, which hides under the hood the whole compilation process. We just write a
code, then compile it and link in one go. By default, the end result is a PE file: a native
executable format for Windows.

Yet, sometimes it is useful to split this process into steps, so that we can have more control
over it.

Lets’ revise how the compilation of the C/C++ code looks at conceptual level:

And now compare it with the steps taken when the application is created from a code
written in assembler:

As we can see, the compilation of the code from the higher level language differs just at the
beginning. Also, while compiling the C code, in one of the steps assembly code is generated.
This is interesting, because instead of writing the assembly by ourselves, we can write the

15

code in C, and then request the compiler to give us assembly as the output. Then, we will
just need to modify the assembly according to the shellcode principles. More about it will be
explained in further paragraphs.

We have the following example code:

#include <Windows.h>

int main()
{
 const char msg_title[] = "Demo!";
 const char msg_content[] = "Hello World!";

 MessageBoxA(0, msg_title, msg_content, MB_OK);
 ExitProcess(0);
}

Let’s try to use Visual Studio compiler and linker from the command prompt, instead of the
integrated environment. We can do it by selecting “VS Native Tools Command Prompt”.
Then we need to traverse to the directory with our code.

The bitness of the output executable (32 or 64 bit) will be selected by default depending
what version of the command prompt you selected.

To compile the code, we use cl.exe. Using the option /c compiles code but prevents from
linking it: so, as the result we get an object file (*.obj).

cl /c demo.cpp

Then, we may link the obj file with the help of the default linker that is a part of the Visual
Studio package: link.exe. Sometimes we will need to provide additional libraries with which
the application must be linked, or the entry point (in case if it uses a label different from the
default one). Example of linking:

link demo.obj /defaultlib:user32.lib /out:demo_cpp.exe

Note that since the steps are independent from each other, you can also use an alternative
linker instead of the default one - which also may be used to manipulate or obfuscate the
format. A good example is crinkler, which is an executable compressor in the form of a linker.
But this is another story…

If you add a parameter /FA, in addition to the *.obj file you will also get an assembly output
in MASM.

cl /c /FA demo.cpp

You can then compile the generated assembly into an object file using MASM:

ml /c demo.asm

Dividing this process into steps gives us the opportunity to manipulate the assembly, and
adjust it to our needs rather than writing it from scratch.

16

From a C project to the shellcode

The core idea

The presented method of creating shellcodes takes advantage of the fact that we can
compile the C code into assembly. It consists of the following basic steps:

1. Prepare a project in C.

2. Refactor the project to load all the used imports by the PEB lookup (remove the
dependency from the Import Table)

3. Use a C compiler to generate assembly:

cl /c /FA /GS- <file_name>.cpp

4. Refactor the assembly code to make it a valid shellcode (remove other left
dependencies, inline the strings, variables, etc)

5. Compile it by MASM:

ml /c file.asm

6. Link it into a valid PE file, test if it runs properly

7. Dump the code section (i.e. with the help of PE-bear) - this is our shellcode

Note that the assembly generated by the C compiler is not guaranteed to be always 100%
valid MASM code, because it is mostly generated as a listing for informational purposes. So,
sometimes it will require manual cleaning.

Preparing the C project

When we prepare a C project to be compiled as a shellcode, we need to follow some rules: +
do not use imports directly - always resolve them dynamically via PEB + do not use any
static libraries + use only local variables: no global, no static (otherwise they will be stored
in a separate section and break the Position-Independence!) + use stack-based strings (or
inline them later in assembly)

As an example to illustrate the ides, we will use the simple demo, popping up a messagebox:

#include <Windows.h>

int main()
{
 MessageBoxW(0, L"Hello World!", L"Demo!", MB_OK);
 ExitProcess(0);
}

17

Preparing the Imports

As the first step of our preparation, we need to make all the used imports load dynamically.
We have 2 imports in this project: MessageBoxA from user32.dll and ExitProcess from
kernel32.dll.

In a normal case, if we want those imports to load dynamically, and not be included in the
Import Table, we will refactor it similarly to the following:

#include <Windows.h>

int main()
{
 LPVOID u32_dll = LoadLibraryA("user32.dll");

 int (WINAPI * _MessageBoxW)(
 _In_opt_ HWND hWnd,
 _In_opt_ LPCWSTR lpText,
 _In_opt_ LPCWSTR lpCaption,
 In UINT uType) = (int (WINAPI*)(
 _In_opt_ HWND,
 _In_opt_ LPCWSTR,
 _In_opt_ LPCWSTR,
 In UINT)) GetProcAddress((HMODULE)u32_dll, "MessageBoxW");

 if (_MessageBoxW == NULL) return 4;

 _MessageBoxW(0, L"Hello World!", L"Demo!", MB_OK);

 return 0;
}

This is good as the first step of preparation, but not enough: still, we have two dependencies
left: LoadLibraryA and GetProcAddress. Those two functions we need to resolve by the PEB
lookup - we will use the peb_lookup.h that we created in the previous part. This is how the
final result of the refactoring will look like popup.cpp:

#include <Windows.h>
#include "peb_lookup.h"

int main()
{
 LPVOID base = get_module_by_name((const LPWSTR)L"kernel32.dll");
 if (!base) {
 return 1;
 }

 LPVOID load_lib = get_func_by_name((HMODULE)base, (LPSTR)"LoadLibraryA");
 if (!load_lib) {
 return 2;
 }
 LPVOID get_proc = get_func_by_name((HMODULE)base, (LPSTR)"GetProcAddress");
 if (!get_proc) {
 return 3;
 }
 HMODULE(WINAPI * _LoadLibraryA)(LPCSTR lpLibFileName) = (HMODULE(WINAPI*)(LPCSTR))load_lib;
 FARPROC(WINAPI * _GetProcAddress)(HMODULE hModule, LPCSTR lpProcName)
 = (FARPROC(WINAPI*)(HMODULE, LPCSTR)) get_proc;

https://github.com/hasherezade/masm_shc/blob/master/demos/popup.cpp

18

 LPVOID u32_dll = _LoadLibraryA("user32.dll");

 int (WINAPI * _MessageBoxW)(
 _In_opt_ HWND hWnd,
 _In_opt_ LPCWSTR lpText,
 _In_opt_ LPCWSTR lpCaption,
 In UINT uType) = (int (WINAPI*)(
 _In_opt_ HWND,
 _In_opt_ LPCWSTR,
 _In_opt_ LPCWSTR,
 In UINT)) _GetProcAddress((HMODULE)u32_dll, "MessageBoxW");

 if (_MessageBoxW == NULL) return 4;

 _MessageBoxW(0, L"Hello World!", L"Demo!", MB_OK);

 return 0;
}

Beware of the jump tables

If we use switch conditions in the code, they may get compiled as a jump table. This is an
automatic optimization performed by the compiler. In a normal executable, it is a beneficial
solution. But when we write a shellcode, we must beware of it, because it breaks position
independence of the code: jump table is a structure that requires to be relocated.

Example of how the jump table looks in assembly:

$LN14@switch_sta:
 DD $LN8@switch_sta
 DD $LN6@switch_sta
 DD $LN10@switch_sta
 DD $LN4@switch_sta
 DD $LN2@switch_sta
$LN13@switch_sta:
 DB 0
 DB 1
 DB 4
 DB 4
 DB 4
 DB 4
 DB 4
 DB 4
 DB 4
 DB 4
 DB 4
 DB 4
 DB 4
 DB 2
 DB 4
 DB 4
 DB 4
 DB 4
 DB 3

The decision if the jump table will be generated or not for a switch statement is taken by a
compiler. For a small number of cases (less than 4) it is usually not generated. But if we
want to check a bigger number of conditions, we must refactor the code to avoid a long

https://stackoverflow.com/questions/17061967/c-switch-and-jump-tables

19

switch statement: either break checks into multiple functions, or replace them by if-else
statements.

Example:

• this long switch statement will cause a generation of the jump table:

bool switch_state(char *buf, char *resp)
{
 switch (resp[0]) {
 case 0:
 if (buf[0] != '9') break;
 resp[0] = 'Y';
 return true;
 case 'Y':
 if (buf[0] != '3') break;
 resp[0] = 'E';
 return true;
 case 'E':
 if (buf[0] != '5') break;
 resp[0] = 'S';
 return true;
 case 'S':
 if (buf[0] != '8') break;
 resp[0] = 'D';
 return true;
 case 'D':
 if (buf[0] != '4') break;
 resp[0] = 'O';
 return true;
 case 'O':
 if (buf[0] != '7') break;
 resp[0] = 'N';
 return true;
 case 'N':
 if (buf[0] != '!') break;
 resp[0] = 'E';
 return true;
 }
 return false;
}

• however, if we break it into several segments, we can avoid the generation of the jump
table:

bool switch_state(char *buf, char *resp)
{
 {
 switch (resp[0]) {
 case 0:
 if (buf[0] != '9') break;
 resp[0] = 'Y';
 return true;
 case 'Y':
 if (buf[0] != '3') break;
 resp[0] = 'E';
 return true;
 case 'E':
 if (buf[0] != '5') break;
 resp[0] = 'S';

20

 return true;
 }
 }
 {
 switch (resp[0]) {
 case 'S':
 if (buf[0] != '8') break;
 resp[0] = 'D';
 return true;
 case 'D':
 if (buf[0] != '4') break;
 resp[0] = 'O';
 return true;
 case 'O':
 if (buf[0] != '7') break;
 resp[0] = 'N';
 return true;
 }
 }
 {
 switch (resp[0]) {
 case 'N':
 if (buf[0] != '!') break;
 resp[0] = 'E';
 return true;
 }
 }
 return false;
}

• alternatively, we can just rewrite it using if-else:

bool switch_state(char *buf, char *resp)
{

 if (resp[0] == 0 && buf[0] == '9') {
 resp[0] = 'Y';
 }
 else if (resp[0] == 'Y' && buf[0] == '3') {
 resp[0] = 'E';
 }
 else if (resp[0] == 'E' && buf[0] == '5') {
 resp[0] = 'S';
 }
 else if (resp[0] == 'S' && buf[0] == '8') {
 resp[0] = 'D';
 }
 else if (resp[0] == 'D' && buf[0] == '4') {
 resp[0] = 'O';
 }
 else if (resp[0] == 'O' && buf[0] == '7') {
 resp[0] = 'N';
 }
 else if (resp[0] == 'N' && buf[0] == '!') {
 resp[0] = 'E';
 }
 return false;
}

21

Removing the implicit dependencies

We must also be careful not to introduce some implicit dependencies in our project. For
example if we initialize a variable in the following way:

struct sockaddr_in sock_config = { 0 };

It will cause an implicit call to memset from an external library. In assembly we will see the
dependency perpended with the keyword EXTRN:

EXTRN _memset:PROC

In order to remove such dependencies, we need to initialize the structures in a different
way. Either by our own functions, or by functions that are guaranteed to be inlined, such as
SecureZeroMemory (mentioned here):

struct sockaddr_in sock_config;
SecureZeroMemory(&sock_config, sizeof(sock_config));

Preparing the strings (optional)

At this point we may also refactor all the used string into stack-based strings, as it was
described by Nick Harbour in the following article. Example:

 char load_lib_name[] = {'L','o','a','d','L','i','b','r','a','r','y','A',0};
 LPVOID load_lib = get_func_by_name((HMODULE)base, (LPSTR)load_lib_name);

After compilation to assembly, the string will look in the following way:

; Line 10
 mov BYTE PTR _load_lib_name$[ebp], 76 ; 0000004cH
 mov BYTE PTR _load_lib_name$[ebp+1], 111 ; 0000006fH
 mov BYTE PTR _load_lib_name$[ebp+2], 97 ; 00000061H
 mov BYTE PTR _load_lib_name$[ebp+3], 100 ; 00000064H
 mov BYTE PTR _load_lib_name$[ebp+4], 76 ; 0000004cH
 mov BYTE PTR _load_lib_name$[ebp+5], 105 ; 00000069H
 mov BYTE PTR _load_lib_name$[ebp+6], 98 ; 00000062H
 mov BYTE PTR _load_lib_name$[ebp+7], 114 ; 00000072H
 mov BYTE PTR _load_lib_name$[ebp+8], 97 ; 00000061H
 mov BYTE PTR _load_lib_name$[ebp+9], 114 ; 00000072H
 mov BYTE PTR _load_lib_name$[ebp+10], 121 ; 00000079H
 mov BYTE PTR _load_lib_name$[ebp+11], 65 ; 00000041H
 mov BYTE PTR _load_lib_name$[ebp+12], 0
; Line 11
 lea eax, DWORD PTR _load_lib_name$[ebp]

This step is an alternative to inlining strings in assembler, which will be presented later. We
can choose any method that we find more convenient. If we choose to use stack-based
strings, this is how our code will look like after the refactoring:

#include <Windows.h>
#include "peb_lookup.h"

int main()
{
 wchar_t kernel32_dll_name[] = {'k','e','r','n','e','l','3','2','.','d','l','l', 0};
 LPVOID base = get_module_by_name((const LPWSTR)kernel32_dll_name);

http://www.exploit-monday.com/2013/08/writing-optimized-windows-shellcode-in-c.html
https://nickharbour.wordpress.com/2010/07/01/writing-shellcode-with-a-c-compiler/
https://nickharbour.wordpress.com/2010/07/01/writing-shellcode-with-a-c-compiler/

22

 if (!base) {
 return 1;
 }

 char load_lib_name[] = {'L','o','a','d','L','i','b','r','a','r','y','A',0};
 LPVOID load_lib = get_func_by_name((HMODULE)base, (LPSTR)load_lib_name);
 if (!load_lib) {
 return 2;
 }
 char get_proc_name[] = {'G','e','t','P','r','o','c','A','d','d','r','e','s','s',0};
 LPVOID get_proc = get_func_by_name((HMODULE)base, (LPSTR)get_proc_name);
 if (!get_proc) {
 return 3;
 }
 HMODULE(WINAPI * _LoadLibraryA)(LPCSTR lpLibFileName) = (HMODULE(WINAPI*)(LPCSTR))load_lib;
 FARPROC(WINAPI * _GetProcAddress)(HMODULE hModule, LPCSTR lpProcName)
 = (FARPROC(WINAPI*)(HMODULE, LPCSTR)) get_proc;

 char user32_dll_name[] = {'u','s','e','r','3','2','.','d','l','l', 0};
 LPVOID u32_dll = _LoadLibraryA(user32_dll_name);

 char message_box_name[] = {'M','e','s','s','a','g','e','B','o','x','W', 0};
 int (WINAPI * _MessageBoxW)(
 _In_opt_ HWND hWnd,
 _In_opt_ LPCWSTR lpText,
 _In_opt_ LPCWSTR lpCaption,
 In UINT uType) = (int (WINAPI*)(
 _In_opt_ HWND,
 _In_opt_ LPCWSTR,
 _In_opt_ LPCWSTR,
 In UINT)) _GetProcAddress((HMODULE)u32_dll, message_box_name);

 if (_MessageBoxW == NULL) return 4;

 wchar_t msg_content[] = {'H','e','l','l','o', ' ', 'W','o','r','l','d','!', 0};
 wchar_t msg_title[] = {'D','e','m','o','!', 0};
 _MessageBoxW(0, msg_title, msg_content, MB_OK);

 return 0;
}

Using stack-based strings has its pros and cons. The advantage is that we can implement it
from a C code, and we don’t have to alter them in the assembly later. However, inlining
strings in assembly can be automated (i.e. by this small utility), so it is not a big
inconvenience (and it also makes obfuscating strings easier).

In this article I decided to present the second way: so, we do not change the strings in the C
file, but instead post-process the assembly. Yet, the method using stack-based strings is
presented as a reference. (Of course we may also use a mix of both methods: refactor some
of the strings to stack-based, and inline the remaining ones).

Compiling to assembly

Now we are ready to compile this project into assembly. This step is the same for 32 and 64
bit version - the only difference is that we need to choose a different Visual Studio Native
Tools Command Prompt (appropriately x86 or x64):

https://github.com/hasherezade/masm_shc

23

 cl /c /FA /GS- demo.cpp

Remember to store the peb_lookup.h header in the same directory as the demo.cpp - and it
will be included automatically.

The flag /FA is very important because it is responsible for generating the assembly listing
that we will be further processing.

Disabling the cookie checks

The flag /GS- is responsible for disabling stack cookie checks. If we forget to use it, our code
will contain the following external dependencies:

EXTRN __GSHandlerCheck:PROC
EXTRN __security_check_cookie:PROC
EXTRN __security_cookie:QWORD

And references to them, for example:

 sub rsp, 664 ; 00000298H
 mov rax, QWORD PTR __security_cookie
 xor rax, rsp

…

 mov rcx, QWORD PTR __$ArrayPad$[rsp]
 xor rcx, rsp
 call __security_check_cookie
 add rsp, 664 ; 00000298H
 pop rdi
 pop rsi
 ret 0

We can still remove them manually as demonstrated below - but it is recommended to just
disable them at the compilation stage.

Change security cookie to 0:

 sub rsp, 664 ; 00000298H
 mov rax, 0; QWORD PTR __security_cookie
 xor rax, rsp

And remove the line where the security cookie was checked:

 mov rcx, QWORD PTR __$ArrayPad$[rsp]
 xor rcx, rsp
 ;call __security_check_cookie
 add rsp, 664 ; 00000298H
 pop rdi
 pop rsi
 ret 0

24

Refactoring the assembly

The described method can be used for creating 32 bit shellcodes as well as 64 bit. However,
there are some subtle differences between those two, and the steps may differ. That’s why
they will be described separately.

Most of the steps described here can be automated with the help of masm_shc
utility. Yet, I recommend going through the full process manually at least once, in
order to get better understanding.

32 bit

To start, we need to have a 32 bit assembly, generated by the cl /c /FA /GS- demo.cpp
command run from the 32 bit version of the Visual Studio Native Tools Command Prompt.

0. Cleaning up the assembly

First let’s use it as is, and test if you can get the output EXE. We will try to compile the
assembly using 32 bit MASM:

ml <file_name>.asm

Since we use FS register, the assembler will print an error:

Error A2108: use of register assumed to ERROR

 In order to silence it out, we need to add the following line on the top of our file (just after
the assembly header):

assume fs:nothing

After this modification, the file should compile without issues.

Run the output and make sure that everything works fine. At this point we should get a
valid EXE. Yet, it we load it into a PE viewer, (i.e. PE-bear), we will see that although we
removed all the dependencies in our C code, there are still some in the resulting output. It
still has an Import Table. It is because of some standard libraries that are linked by default.
We need to get rid of them.

1. Removing the rest of the external dependencies

In this step we need to get rid of the remaining imports, which came from the automatically
included static libraries.

Comment-out the following includes:

INCLUDELIB LIBCMT
INCLUDELIB OLDNAMES

You can also comment-out the line including listing:

include listing.inc

https://github.com/hasherezade/masm_shc

25

In the previous step, the object file was linked with a static library LibCMT that contained
the default entry point: _mainCRTStartup. Now we removed this dependency. So, our entry
point will not be found by the linker. We need to link it giving the entry point explicitly:

ml /c <file_name>.asm
link <file_name>.obj /entry:main

or, in one line (deploying the default linker just after the compilation):

ml /c <file_name>.asm /link /entry:main

Check if everything works fine. Open the resulting PE in PE-bear. You will see that now the
PE does not have an Import Table at all. Also the code is much smaller. The Entry Point
starts exactly in our main function.

2. Making the code Position-Independent: processing strings

Note that this step can be omitted if all strings are refactored to stack-based, as described
here.

To make the shellcode position-independent, we cannot have any data stored in a separate
section. We can only use the .text section for everything. So far, our strings are stored in
the .data section. So, we need to refactor the assembly code to inline them.

Example of inlining a string:

• we copy the string from the data segment, and paste just before the line where it was
pushed on the stack. We push it on the stack by making a call after the string:

 call after_kernel32_str
DB 'k', 00H, 'e', 00H, 'r', 00H, 'n', 00H, 'e', 00H, 'l', 00H
 DB '3', 00H, '2', 00H, '.', 00H, 'd', 00H, 'l', 00H, 'l', 00H, 00H
 DB 00H
 ORG $+2
after_kernel32_str:
 ;push OFFSET $SG89718

If our projects has many strings, it can be laborious to inline all of them by hand,
so it can be done automatically with masm_shc.

After inlining all the strings we should compile the application again, by:

ml /c <file_name>.asm /link /entry:main

Sometimes inlining the strings will make a distance between instructions too big, and
prevent short jumps. We can fix it easily by changing short jumps to long. Example:

• Before:

 jmp SHORT $LN1@main

• After:

 jmp $LN1@main

https://github.com/hasherezade/masm_shc

26

Alternatively, we may copy the instructions where the jump was leading into.

Example - instead of jumping to the end of function to terminate the branch, we can make
an alternative ending:

 ;jmp SHORT $LN1@main
 ; Line 183
 mov esp, ebp
 pop ebp
 ret 0

Test the resulting executable. If it doesn’t run, it means you committed some error while
inlining strings.

Remember, that now all the strings are in the .text section. So, if you are
processing (i.e. editing, decoding) a string that is inlined, first you must set the
.text section as writable (by changing the flag in the sections headers) -
otherwise the EXE will crash. Once the shellcode is extracted from the EXE, it will
be anyways loaded into RWX (readable, writeable, executable) memory - so from
the shellcode point of view it makes no difference. More about it will be described
in the further example.

3. Cuting-out and testing the shellcode.
• Open the final version of the app in PE-bear. Notice that now the exe should have no

import table, as well as no relocations table.

• Dump the .text section from the file using PE-bear

• Test the shellcode, by running it by runshc32.exe from the masm_shc package

• If everything went fine, the shellcode should run the same way as the EXE

64 bit

To start, we need to have a 64 bit assembly, generated by the cl /c /FA /GS- demo.cpp
command run from the 64 bit version of the Visual Studio Native Tools Command Prompt.

The stack alignment stub

In case of the 64 bit code, we may also need to ensure 16-byte stack alignment. This
alignment is required if we want to use XMM instructions in our code. If we fail to align the
stack as expected, our application will crash as soon as we attempt to use an XMM register.
More details about it was described in @mattifestation's article, under the paragraph
“Ensuring Proper Stack Alignment in 64-bit Shellcode”.

https://github.com/hasherezade/masm_shc
http://www.exploit-monday.com/2013/08/writing-optimized-windows-shellcode-in-c.html

27

The code proposed by @mattifestation to ensure this alignment:

_TEXT SEGMENT

; AlignRSP is a simple call stub that ensures that the stack is 16-byte aligned prior
; to calling the entry point of the payload. This is necessary because 64-bit functions
; in Windows assume that they were called with 16-byte stack alignment. When amd64
; shellcode is executed, you can't be assured that you stack is 16-byte aligned. For example,
; if your shellcode lands with 8-byte stack alignment, any call to a Win32 function will likely
; crash upon calling any ASM instruction that utilizes XMM registers (which require 16-byte)
; alignment.

AlignRSP PROC
 push rsi ; Preserve RSI since we're stomping on it
 mov rsi, rsp ; Save the value of RSP so it can be restored
 and rsp, 0FFFFFFFFFFFFFFF0h ; Align RSP to 16 bytes
 sub rsp, 020h ; Allocate homing space for ExecutePayload
 call main ; Call the entry point of the payload
 mov rsp, rsi ; Restore the original value of RSP
 pop rsi ; Restore RSI
 ret ; Return to caller
AlignRSP ENDP

_TEXT ENDS

This code is a stub from which we are supposed to run our main function, in order to align
the stack before any of our code is executed.

We should append it before the first _TEXT SEGMENT of our file. Once we add this stub, it
should become our new entry point of the application:

ml64 <file.asm> /link /entry:AlignRSP

0. Cleaning up the assembly

First let’s use it as is, and test if it can give us valid output. We will try to compile the
assembly using 64 bit MASM (from 64 bit version of the Visual Studio Native Tools
Command Prompt):

ml64 <file_name>.asm

This time we get several errors. It is due to the fact that the generated listing is not fully
compatible with MASM, and we need to fix all the compatibility issues manually. We will get
the similar list of errors:

shellcode_task_step1.asm(75) : error A2006:undefined symbol : FLAT
shellcode_task_step1.asm(86) : error A2006:undefined symbol : FLAT
shellcode_task_step1.asm(98) : error A2006:undefined symbol : FLAT
shellcode_task_step1.asm(116) : error A2006:undefined symbol : FLAT
shellcode_task_step1.asm(120) : error A2006:undefined symbol : FLAT
shellcode_task_step1.asm(132) : error A2006:undefined symbol : FLAT
shellcode_task_step1.asm(133) : error A2006:undefined symbol : FLAT
shellcode_task_step1.asm(375) : error A2027:operand must be a memory expression
shellcode_task_step1.asm(30) : error A2006:undefined symbol : $LN16
shellcode_task_step1.asm(31) : error A2006:undefined symbol : $LN16
shellcode_task_step1.asm(36) : error A2006:undefined symbol : $LN13

28

shellcode_task_step1.asm(37) : error A2006:undefined symbol : $LN13
shellcode_task_step1.asm(41) : error A2006:undefined symbol : $LN7
shellcode_task_step1.asm(42) : error A2006:undefined symbol : $LN7

• We need to manually remove the word FLAT from the asm file. Just replace FLAT: with
nothing.

• We need to remove the pdata and xdata segments

• We need to fix the reference to gs register to gs:[96]

from:

mov rax, QWORD PTR gs:96

to:

mov rax, QWORD PTR gs:[96]

Now the file should assemble properly. Run the resulting executable and check it in PE-
bear.

1. Removing the rest of the external dependencies

In this step we need to get rid of the remaining imports, which came from the automatically
included static libraries.

Just like in 32-bit version, we need to comment-out the automatically-added includes:

INCLUDELIB LIBCMT
INCLUDELIB OLDNAMES

If some functions have been added automatically from those libraries, we need to get rid of
them as described in the analogical part about the 32 bit version.

Compile the file, giving the Entry Point explicitly:

ml64 /c <file_name>.asm /link /entry:<entry_function>

2. Making the code Position-Independent: processing strings

Note that this step can be omitted if all strings are refactored to stack-based, as described
here.

Analogically to the 32-bit version, we need to remove all the references to sections other
than .text. In this case it means inlining all the strings. It will be similar like in the 32-bit
version, but this time arguments to the functions are supplied via registers, rather than
being pushed on the stack. That’s why you need to pop their offsets into appropriate
registers.

29

Example of inlined string for the 64 bit version:

call after_msgbox_str
 DB 'MessageBoxW', 00H
after_msgbox_str:
 pop rdx
 ;lea rdx, OFFSET $SG90389
 mov rcx, QWORD PTR u32_dll$[rsp]
 call QWORD PTR _GetProcAddress$[rsp]

3. Cutting-out and testing the shellcode - analogical to the 32-bit version:
• Open the final version of the app in PE-bear. Notice that now the exe should have no

import table, as well as no relocations table.

• Dump the .text section from the file using PE-bear

• Test the shellcode, by running it by runshc64.exe from the masm_shc package

• If everything went fine, the shellcode should run the same way as the EXE

Extended example - a demo server

So far we prepared a little demo example, that was showing a MessageBox. But what about
something more functional? Will it also work?

In this chapter we will have a look at another example - a little local server. It is a part of
code from the White Rabbit crackme. This part opens sockets at 3 consecutive ports - one
by one - and we are supposed to knock to those ports.

This is a C code knock.cpp that we can compile to assembly:

#include <Windows.h>
#include "peb_lookup.h"

#define LOCALHOST_ROT13 ">?D;=;=;>"

typedef struct
{
 HMODULE(WINAPI * _LoadLibraryA)(LPCSTR lpLibFileName);
 FARPROC(WINAPI * _GetProcAddress)(HMODULE hModule, LPCSTR lpProcName);
} t_mini_iat;

typedef struct
{
 int (PASCAL FAR *_WSAStartup)(
 In WORD wVersionRequired,
 Out LPWSADATA lpWSAData);

 SOCKET(PASCAL FAR *_socket)(
 In int af,
 In int type,
 In int protocol);

 unsigned long (PASCAL FAR *_inet_addr)(_In_z_ const char FAR * cp);

 int (PASCAL FAR *_bind)(
 In SOCKET s,

https://github.com/hasherezade/masm_shc
https://hshrzd.wordpress.com/2018/02/03/white-rabbit-crackme/
https://github.com/hasherezade/masm_shc/blob/master/demos/knock.cpp

30

 _In_reads_bytes_(namelen) const struct sockaddr FAR *addr,
 In int namelen);

 int (PASCAL FAR *_listen)(
 In SOCKET s,
 In int backlog);

 SOCKET(PASCAL FAR *_accept)(
 In SOCKET s,
 _Out_writes_bytes_opt_(*addrlen) struct sockaddr FAR *addr,
 _Inout_opt_ int FAR *addrlen);

 int (PASCAL FAR *_recv)(
 In SOCKET s,
 _Out_writes_bytes_to_(len, return) __out_data_source(NETWORK) char FAR * buf,
 In int len,
 In int flags);

 int (PASCAL FAR *_send)(
 In SOCKET s,
 _In_reads_bytes_(len) const char FAR * buf,
 In int len,
 In int flags);

 int (PASCAL FAR *_closesocket)(IN SOCKET s);

 u_short(PASCAL FAR *_htons)(_In_ u_short hostshort);

 int (PASCAL FAR *_WSACleanup)(void);

} t_socket_iat;

bool init_iat(t_mini_iat &iat)
{
 LPVOID base = get_module_by_name((const LPWSTR)L"kernel32.dll");
 if (!base) {
 return false;
 }

 LPVOID load_lib = get_func_by_name((HMODULE)base, (LPSTR)"LoadLibraryA");
 if (!load_lib) {
 return false;
 }
 LPVOID get_proc = get_func_by_name((HMODULE)base, (LPSTR)"GetProcAddress");
 if (!get_proc) {
 return false;
 }

 iat._LoadLibraryA = (HMODULE(WINAPI*)(LPCSTR)) load_lib;
 iat._GetProcAddress = (FARPROC(WINAPI*)(HMODULE, LPCSTR)) get_proc;
 return true;
}

bool init_socket_iat(t_mini_iat &iat, t_socket_iat &sIAT)
{
 LPVOID WS232_dll = iat._LoadLibraryA("WS2_32.dll");

 sIAT._WSAStartup = (int (PASCAL FAR *)(
 In WORD,
 Out LPWSADATA)) iat._GetProcAddress((HMODULE)WS232_dll, "WSAStartup");

31

 sIAT._socket = (SOCKET(PASCAL FAR *)(
 In int af,
 In int type,
 In int protocol)) iat._GetProcAddress((HMODULE)WS232_dll, "socket");

 sIAT._inet_addr
 = (unsigned long (PASCAL FAR *)(_In_z_ const char FAR * cp))
 iat._GetProcAddress((HMODULE)WS232_dll, "inet_addr");

 sIAT._bind = (int (PASCAL FAR *)(
 In SOCKET s,
 _In_reads_bytes_(namelen) const struct sockaddr FAR *addr,
 In int namelen)) iat._GetProcAddress((HMODULE)WS232_dll, "bind");

 sIAT._listen = (int (PASCAL FAR *)(
 In SOCKET s,
 In int backlog)) iat._GetProcAddress((HMODULE)WS232_dll, "listen");

 sIAT._accept = (SOCKET(PASCAL FAR *)(
 In SOCKET s,
 _Out_writes_bytes_opt_(*addrlen) struct sockaddr FAR *addr,
 _Inout_opt_ int FAR *addrlen)) iat._GetProcAddress((HMODULE)WS232_dll, "accept"); ;

 sIAT._recv = (int (PASCAL FAR *)(
 In SOCKET s,
 _Out_writes_bytes_to_(len, return) __out_data_source(NETWORK) char FAR * buf,
 In int len,
 In int flags)) iat._GetProcAddress((HMODULE)WS232_dll, "recv"); ;

 sIAT._send = (int (PASCAL FAR *)(
 In SOCKET s,
 _In_reads_bytes_(len) const char FAR * buf,
 In int len,
 In int flags)) iat._GetProcAddress((HMODULE)WS232_dll, "send");

 sIAT._closesocket
 = (int (PASCAL FAR *)(IN SOCKET s)) iat._GetProcAddress((HMODULE)WS232_dll,
"closesocket");

 sIAT._htons
 = (u_short(PASCAL FAR *)(_In_ u_short hostshort))
iat._GetProcAddress((HMODULE)WS232_dll, "htons");

 sIAT._WSACleanup
 = (int (PASCAL FAR *)(void)) iat._GetProcAddress((HMODULE)WS232_dll, "WSACleanup");

 return true;
}

///---
bool switch_state(char *buf, char *resp)
{
 switch (resp[0]) {
 case 0:
 if (buf[0] != '9') break;
 resp[0] = 'Y';
 return true;
 case 'Y':
 if (buf[0] != '3') break;
 resp[0] = 'E';

32

 return true;
 case 'E':
 if (buf[0] != '5') break;
 resp[0] = 'S';
 return true;
 default:
 resp[0] = 0; break;
 }
 return false;
}

inline char* rot13(char *str, size_t str_size, bool decode)
{
 for (size_t i = 0; i < str_size; i++) {
 if (decode) {
 str[i] -= 13;
 }
 else {
 str[i] += 13;
 }
 }
 return str;
}

bool listen_for_connect(t_mini_iat &iat, int port, char resp[4])
{
 t_socket_iat sIAT;
 if (!init_socket_iat(iat, sIAT)) {
 return false;
 }
 const size_t buf_size = 4;
 char buf[buf_size];

 LPVOID u32_dll = iat._LoadLibraryA("user32.dll");

 int (WINAPI * _MessageBoxW)(
 _In_opt_ HWND hWnd,
 _In_opt_ LPCWSTR lpText,
 _In_opt_ LPCWSTR lpCaption,
 In UINT uType) = (int (WINAPI*)(
 _In_opt_ HWND,
 _In_opt_ LPCWSTR,
 _In_opt_ LPCWSTR,
 In UINT)) iat._GetProcAddress((HMODULE)u32_dll, "MessageBoxW");

 bool got_resp = false;
 WSADATA wsaData;
 SecureZeroMemory(&wsaData, sizeof(wsaData));
 /// code:
 if (sIAT._WSAStartup(MAKEWORD(2, 2), &wsaData) != 0) {
 return false;
 }
 struct sockaddr_in sock_config;
 SecureZeroMemory(&sock_config, sizeof(sock_config));
 SOCKET listen_socket = 0;
 if ((listen_socket = sIAT._socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)) == INVALID_SOCKET) {
 _MessageBoxW(NULL, L"Creating the socket failed", L"Stage 2", MB_ICONEXCLAMATION);
 sIAT._WSACleanup();
 return false;
 }

33

 char *host_str = rot13(LOCALHOST_ROT13, _countof(LOCALHOST_ROT13) - 1, true);
 sock_config.sin_addr.s_addr = sIAT._inet_addr(host_str);
 sock_config.sin_family = AF_INET;
 sock_config.sin_port = sIAT._htons(port);

 rot13(host_str, _countof(LOCALHOST_ROT13) - 1, false); //encode it back

 bool is_ok = true;
 if (sIAT._bind(listen_socket, (SOCKADDR*)&sock_config, sizeof(sock_config)) ==
SOCKET_ERROR) {
 is_ok = false;
 _MessageBoxW(NULL, L"Binding the socket failed", L"Stage 2", MB_ICONEXCLAMATION);

 }
 if (sIAT._listen(listen_socket, SOMAXCONN) == SOCKET_ERROR) {
 is_ok = false;
 _MessageBoxW(NULL, L"Listening the socket failed", L"Stage 2", MB_ICONEXCLAMATION);
 }

 SOCKET conn_sock = SOCKET_ERROR;
 while (is_ok && (conn_sock = sIAT._accept(listen_socket, 0, 0)) != SOCKET_ERROR) {
 if (sIAT._recv(conn_sock, buf, buf_size, 0) > 0) {
 got_resp = true;
 if (switch_state(buf, resp)) {
 sIAT._send(conn_sock, resp, buf_size, 0);
 sIAT._closesocket(conn_sock);
 break;
 }
 }
 sIAT._closesocket(conn_sock);
 }

 sIAT._closesocket(listen_socket);
 sIAT._WSACleanup();
 return got_resp;
}

int main()
{
 t_mini_iat iat;
 if (!init_iat(iat)) {
 return 1;
 }
 char resp[4];
 SecureZeroMemory(resp, sizeof(resp));
 listen_for_connect(iat, 1337, resp);
 listen_for_connect(iat, 1338, resp);
 listen_for_connect(iat, 1339, resp);
 return 0;
}

In this example I introduce some structures that will work as pseudo-IATs of our shellcode.
It is very convenient to encapsulate loaded functions in this way - we can also reuse such
snippets across various projects, to avoid rewriting the part of code responsible for loading
functions.

We can also see that one string is encoded with ROT13, and decoded just before use. After
we will inline this string, we have to set the .text section as writable - because the string is

34

going to be modified. After using the string, we have to encode it back, to leave it in its initial
state for further use of this function.

Notice that I am not using the strlen function - instead I used a macro _countof that
calculates a number of elements. Since strlen gives a length without the terminating \0 its
equivalent will be: _countof(str) -1:

rot13(LOCALHOST_ROT13, _countof(LOCALHOST_ROT13) - 1, true);

Building

The project can be built by:

cl /c /FA /GS- main.cpp
masm_shc.exe main.asm main1.asm
ml main1.asm /link /entry:main

Running

Dump the .text section by PE-bear. Save as: serv32.bin or serv64.bin appropriately.

Depending on the bitness of the build, run it by runshc32.exe or runshc64.exe (available
here).

Example:

runshc32.exe serv32.bin

Testing

Check in Process Explorer if the appropriate port is open.

For the purpose of testing, we can use the following Python (Python2.7) script
knock_test.py:

import socket
import sys
import argparse

def main():
 parser = argparse.ArgumentParser(description="Send to the Crackme")
 parser.add_argument('--port', dest="port", default="1337", help="Port to connect")
 parser.add_argument('--buf', dest="buf", default="0", help="Buffer to send")
 args = parser.parse_args()
 my_port = int(args.port, 10)
 print '[+] Connecting to port: ' + hex(my_port)
 key = args.buf
 try:
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 s.connect(('127.0.0.1', my_port))
 s.send(key)
 result = s.recv(512)
 if result is not None:
 print "[+] Response: " + result
 s.close()
 except socket.error:

https://github.com/hasherezade/masm_shc/tree/master/runshc
https://github.com/hasherezade/masm_shc/blob/master/demos/knock_test.py

35

 print "Could not connect to the socket. Is the crackme running?"

if __name__ == "__main__":
 sys.exit(main())

We will be sending expected numbers, causing the internal states to change. The valid
requests/responses:

C:\Users\tester\Desktop>C:\Python27\python.exe ping.py --buf 9 --port 1337
[+] Connecting to port: 0x539
[+] Response: Y

C:\Users\tester\Desktop>C:\Python27\python.exe ping.py --buf 3 --port 1338
[+] Connecting to port: 0x53a
[+] Response: E

C:\Users\tester\Desktop>C:\Python27\python.exe ping.py --buf 5 --port 1339
[+] Connecting to port: 0x53b
[+] Response: S

After the last response, the shellcode should terminate.

In case of the invalid request sent on valid port, the response will be empty, i.e.:

C:\Users\tester\Desktop>C:\Python27\python.exe ping.py --buf 9 --port 1338
[+] Connecting to port: 0x53a
[+] Response:

Conclusion

Since we compiled our C code into a valid assembly, we are free to process it further. This is
where the fun part begins.

In contrast to the high level languages, automatic processing of assembly code is quite
trivial. It gives many advantages if we want to deploy some automated obfuscation. By
processing the assembly file line by line, we can implant some automatically generated junk
code, or fake conditions. We can replace some instructions by their equivalents,
implementing a simple polymorphism. We can also sprinkle antidebug techniques between
our code blocks. There are many possibilities - yet, the topic of obfuscation is very big, and
out of scope of this paper.

My goal was to show that it doesn’t take much work to create a shellcode in assembly. We
don’t really have to spend hours by writing the code line by line. It is enough to take
advantage of possibilities given by MSVC. Although the code generated by the C compiler
needs some post-processing, it is in reality simple and can be automated to a big extent.

	From a C project, through assembly, to shellcode
	Introduction
	Prior work and motivations
	Shellcode - general principles
	Position-independent code
	Calling API without the Import Table
	Retrieving PEB
	PEB-based DLL lookup
	Exports lookup

	Wrapping up: the header

	Writing and compiling code in assembly
	Compiling a C project - step by step
	From a C project to the shellcode
	The core idea
	Preparing the C project
	Preparing the Imports
	Beware of the jump tables
	Removing the implicit dependencies
	Preparing the strings (optional)
	Compiling to assembly

	Refactoring the assembly
	32 bit
	0. Cleaning up the assembly
	1. Removing the rest of the external dependencies
	2. Making the code Position-Independent: processing strings
	3. Cuting-out and testing the shellcode.

	64 bit
	The stack alignment stub
	0. Cleaning up the assembly
	1. Removing the rest of the external dependencies
	2. Making the code Position-Independent: processing strings
	3. Cutting-out and testing the shellcode - analogical to the 32-bit version:

	Extended example - a demo server
	Building
	Running
	Testing

	Conclusion

