
Cryogenically Frozen Malware
vx-underground collection // by​ smelly__vx​ and ​Ethereal

https://twitter.com/smelly__vx
https://twitter.com/SpaceEthereal

Frozen Malcode:
For quite sometime now we’ve been sitting on a lesser known malware technique I’ve (smelly)
titled ​Cryogenically Frozen Malcode​. This term derives from the fact that the malicious binary is
in a long-term frozen state and has a low-likelihood of execution (or ​unthawing​ and/or
resurrection​). This technique is not ideal - however under very specific environments or
scenarios it may be viable. This technique is made possible by abusing registry components
tied to specific properties​ within the ​Windows Installer API​.

The ​Windows Installer API’s properties​, which derive from the Windows Installer binary, allow a
product to configure it’s uninstall properties which will be visible from the Control Panel. When a
user selects uninstall (or, depending on the binary configurations, ​modify settings​) it will refer to
the property present within the registry titled ​Uninstall​. (Un)fortunately, the documentation
present on MSDN is slightly misleading - the documentation states that the binary uninstall path
is located in ​HKEY_LOCAL_MACHINE​ i.e.

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Uninstall

However, this is not entirely true. In some scenarios applications will store uninstaller properties
in the user-specific registry key ​HKEY_CURRENT_USER​ which does not require administrative
and/or elevated privileges to write to i.e.

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Uninstall

The image above is a snippet of the file listing present within the Uninstall Key. Each entry
contains attributes which the Control Panel reads when a user navigates through them.

https://docs.microsoft.com/en-us/windows/win32/msi/uninstall-registry-key
https://docs.microsoft.com/en-us/windows/win32/msi/windows-installer-portal
https://docs.microsoft.com/en-us/windows/win32/msi/property-reference
https://docs.microsoft.com/en-us/windows/win32/sysinfo/predefined-keys
https://docs.microsoft.com/en-us/windows/win32/sysinfo/predefined-keys

In this particular paper our code demonstrates enumerating the Uninstall Key, locates a
specified application, hijacks its UninstallString key and replaces it with a powershell command
line which requests our malicious binary be run as admin. Ideally, a non-educated user would
attempt to uninstall the application and allow UAC to execute the binary being presented. Why
would a user not trust the Control Panel?

The image above shows the modified UninstallString path.

powershell.exe start-process {binary-path.exe} -verb runas

