
Identifying Antivirus Software
by enumerating

Minifilter String Names
vx-underground collection // by​ smelly__vx

https://twitter.com/smelly__vx

Introduction:
Lately I’ve been diving deep into the internals of Antivirus software. I’ve got quite a bit of
information I intend to write about and share. However, for the time being, I have decided to
release a small writeup on detecting AVs ​from their Minifilter port string​. I personally have not
seen anyone document this technique - which is neat - considering it is so easy to achieve.
Unfortunately though, as always, this technique does have some limitations and this should be
stated clearly before continuing.

1. This code requires administrative permissions
2. This code returns the AV minifilter name string. This means you’ll need to compile a list

of known AV minifilter string names. This is easily achievable - but it needs to be
hardcoded into your code. Lame. If you’d like a list of these string identifiers check out
the ​MSDN allocated filter altitudes​.

3. For the curious: the APIs in this code segment forward to NTDLL. Converting this to a
syscall-only proof-of-concept would be a pain in the ass. But it is still feasible.

Anyway, now that is out the way, I hope you enjoy this small writeup. It is a cute little trick.

-smelly

https://docs.microsoft.com/en-us/windows/win32/api/fltuser/nf-fltuser-filterconnectcommunicationport#parameters
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/allocated-altitudes

Minifilters, a tl;dr
Although a Red Teamer, or a VXer, may unhook from the user-mode hooks present (i.e. ​Hells
Gate​) put into place by the AV system, there still remains the last major obstacle: the minifilter.
This minifilter system is typically used to detect ransomware operations, and can be used to
perform static analysis on a binary as it is initially executed, so and so forth. It truly is an AVs
biggest strength.

Minifilters are a de facto standard AV tech - in ​Devisha Rochlanis Antivirus Artifacts series​ -
you’ll see these from every major AV (as well as EDRs!). They essentially allow a god-mode
view of the NTFS filesystem. They allow AVs to perform preoperative and postoperative routines
on binaries e.g. perform an action on a binary before its execution and while it is executing.

As a final note, you can read all about minifilters and their uses in this​ amazing introduction by
OSR​.These drivers have much more uses besides AVs. If you’re curious on how AVs implement
minifilters, in a more technical sense, MSDN also provides a proof-of-concept AV you can
download and review. It is worth a review. You can download the ​AV proof-of-concept from their
File System Driver Samples​.

User-mode Minifilter APIs
Windows provides some user mode APIs to communicate with Minifilters. This is a necessity so
user-mode AVs, for example, can communicate with the kernel-mode minifilter.
Communications can take 2 forms:

1. FilterConnectCommunicationPort
2. DeviceIoControl

Some AVs may utilize the ​designed Fltuser.h and relevant APIs to communicate​ with the kernel
mode minifilter. However, some AVs take an alternative approach and communicate directly
using DeviceIoControl. The reasoning for this is a bit beyond the scope of this paper as I do not
intend to explain pros and cons of minifilter communication methods (very little difference).
However, the point remains that Microsoft provides such APIs and some form of flexibility from
the user-mode. The only exception here being that both FilterConnectCommunicationPort and
DeviceIoControl both require your process to run in ​high-integrity​ (administrator). This cannot be
achieved otherwise.

https://github.com/vxunderground/VXUG-Papers/tree/main/Hells%20Gate
https://github.com/vxunderground/VXUG-Papers/tree/main/Hells%20Gate
https://vxug.fakedoma.in/papers/VXUG/Mirrors/ANTIVIRUS_ARTIFACTS_III.pdf
https://www.osr.com/nt-insider/2017-issue2/introduction-standard-isolation-minifilters/
https://www.osr.com/nt-insider/2017-issue2/introduction-standard-isolation-minifilters/
https://docs.microsoft.com/en-us/windows-hardware/drivers/samples/file-system-driver-samples
https://docs.microsoft.com/en-us/windows-hardware/drivers/samples/file-system-driver-samples
https://docs.microsoft.com/en-us/windows/win32/api/fltuser/nf-fltuser-filterconnectcommunicationport
https://docs.microsoft.com/en-us/windows/win32/api/ioapiset/nf-ioapiset-deviceiocontrol
https://docs.microsoft.com/en-us/windows/win32/api/fltuser/
https://docs.microsoft.com/en-us/windows/win32/secauthz/mandatory-integrity-control

Enumerating Minifilter Name Strings
Unlike the traditional meaning of a ‘port’ which usually we think of as an unsigned 16bit integer
(1 - 65535), Minifilter ports on the Windows OS use WCHAR strings as unique identifiers. This
can be seen in the FilterConnectCommunicationPort parameter lpPortName which is:

Pointer to a NULL-terminated wide-character string containing the fully qualified name of the
communication server port (for example, L"\MyFilterPort").

Hence, each minifilter will have a port name we can find using​ FilterFindFirst,​ ​FilterFindNext​,
and ​FilterFindClose​. This is similar functionality to the APIs used to enumerate files in a
directory using ​FindFileFirst​, ​FindNextFile​, and ​FindClose​.

Final remarks
After I demonstrate the code please review the subsequent section on the internals of these
APIs. They’re interesting and if you’re a researcher or Red Teamer, you may end up falling
down a deeper rabbit hole from this paper. It will expose a relatively unknown part of Windows.
Do not hesitate to contact me on whatever you find. This is really cool stuff.

https://docs.microsoft.com/en-us/windows/win32/api/fltuser/nf-fltuser-filterfindfirst
https://docs.microsoft.com/en-us/windows/win32/api/fltuser/nf-fltuser-filterfindnext
https://docs.microsoft.com/en-us/windows/win32/api/fltuser/nf-fltuser-filterfindclose
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-findfirstfilea
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-findnextfilea
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-findclose

The code
1. Before any APIs are invoked we must allocate a ​FILTER_FULL_INFORMATION​ structure.
When you invoke FilterFindFirst the parameter lpBytesReturned returns a DWORD that
specifies the number of bytes returned to the FILTER_FULL_INFORMATION buffer.
Traditionally we’d first invoke FilterFindFirst with a specification of 0 in the dwBufferSize
member to determine how much memory we need to allocate. However, in my preliminary
testing I discovered a majority of this allocation is due to the string name. Hence I allocate
MAX_PATH (260 bytes)​. This will be more than enough for any minifilter name string.

In our first call to FilterFindFirst we print the ​FilterNameBuffer​ from the
FILTER_FULL_INFORMATION​ buffer (​FilterInformation variable​). Note the last variable,
HANDLE Filter​, is returned from FilterFindFirst. This will be used subsequently to continue filter
enumeration.

[Continued below]

DWORD dwError = ERROR_SUCCESS, dwBufferSize = ​0​;
HRESULT Result;

HANDLE Filter = INVALID_HANDLE_VALUE, ProcessHeap = GetProcessHeap();

PFILTER_FULL_INFORMATION FilterInformation = ​NULL​;

FilterInformation = (PFILTER_FULL_INFORMATION)HeapAlloc(ProcessHeap, HEAP_ZERO_MEMORY, MAX_PATH);

if​ (FilterInformation == ​NULL​)
goto​ FAILURE;

Result = FilterFindFirst(FilterFullInformation, FilterInformation, MAX_PATH, &dwBufferSize, &Filter);

if​ (Result != S_OK || Filter == INVALID_HANDLE_VALUE)
{

SetLastError(Win32FromHResult(Result));

goto​ FAILURE;
}

_putws(FilterInformation->FilterNameBuffer);

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/fltuserstructures/ns-fltuserstructures-_filter_full_information
https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file?redirectedfrom=MSDN#paths

2. This code section is very simple. Once we have successfully gotten a search handle on the
filter drivers we simply run a for loop infinitely. If in the event FilterFindNext returns
ERROR_NO_MORE_ITEMS (259, 0x103)​ we have successfully enumerated all minifilter
strings. Otherwise, we continue.by printing the ​FilterNameBuffer​ again. Once we break from the
loop if our search handle is still valid we invoke FilterFindClose to close the search handle.
Additionally, as always, we free the heap.

A small nuance about this API is it does not return DWORD error codes rather it returns
HRESULT error codes​. To compensate for this I wrote a Win32FromHResult function. This is
extremely common and can be found all over the web. It is nothing major.

for​ (;;)
{

ZeroMemory(FilterInformation, dwBufferSize);

Result = FilterFindNext(Filter, FilterFullInformation, FilterInformation,

 MAX_PATH, &dwBufferSize);

if​ (Result != S_OK || Filter == INVALID_HANDLE_VALUE)
{

if​ (Win32FromHResult(Result) == ERROR_NO_MORE_ITEMS)
break​;

SetLastError(Win32FromHResult(Result));

goto​ FAILURE;
}

_putws(FilterInformation->FilterNameBuffer);

}

if​ (Filter)
FilterFindClose(Filter);

if​ (FilterInformation)
HeapFree(ProcessHeap, HEAP_ZERO_MEMORY, FilterInformation);

return​ ERROR_SUCCESS;

DWORD Win32FromHResult(HRESULT Result)

{

if​ ((Result & ​0xFFFF0000​) == MAKE_HRESULT(SEVERITY_ERROR, FACILITY_WIN32, ​0​))
return​ HRESULT_CODE(Result);

if​ (Result == S_OK)
return​ ERROR_SUCCESS;

return​ ERROR_CAN_NOT_COMPLETE;
}

https://docs.microsoft.com/en-us/windows/win32/debug/system-error-codes--0-499-
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-erref/705fb797-2175-4a90-b5a3-3918024b10b8

The output

These are all minifilter port strings found on my machine. You can review them on ​MSDNs
Minifilter Altitude listing​. My friend who ran this proof-of-concept with AVAST installed got the
following results:

aswSP, aswMonFlt, and aswSnx being the Minifilter strings.

bindflt

WdFilter

storqosflt

wcifs

CldFlt

FileCrypt

luafv

npsvctrig

Wof

FileInfo

https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/allocated-altitudes
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/allocated-altitudes

The rabbit hole
The function FilterConnectCommunicationPort invokes ​NtCreateFile​ on the symbolic link
\\Global??\\FltMgrMsg ​which points to ​\FileSystem\Filters\FltMgrMsg. ​The string name specified
in FilterConnectCommunicationPort is passed in the Extended Attributes parameter in
NtCreateFile.

Here is a snippet from IDA:

 RtlInitUnicodeString(&DestinationString, lpcwpPortName);

 v26 = DestinationString.Buffer;

 v25[​0​] = DestinationString.Length;
 v25[​1​] = DestinationString.MaximumLength;
 *(_QWORD *)&EaBuffer[v13 + ​9​] = &DestinationString;
 *(_QWORD *)&EaBuffer[v13 + ​17​] = v25;
 *(_WORD *)&EaBuffer[v13 + ​25​] = wSizeOfContext;
 ​if​ (wSizeOfContext)
 memcpy_0(&EaBuffer[v13 + ​33​], Src, wSizeOfContext);
 RtlInitUnicodeString(&v23, ​L"\\Global??\\FltMgrMsg"​);
 ObjectAttributes.Length = ​48​;
 v14 = ​64​;
 ObjectAttributes.Attributes = ​64​;
 ObjectAttributes.ObjectName = &v23;

 ObjectAttributes.RootDirectory = ​0​i64;
 *(_OWORD *)&ObjectAttributes.SecurityDescriptor = ​0​i64;
 ​if​ (lpSecurityAttributes)
 {

 v15 = !lpSecurityAttributes->bInheritHandle;

 ObjectAttributes.SecurityDescriptor = lpSecurityAttributes->lpSecurityDescriptor;

 ​if​ (!v15)
 v14 = ​66​;
 ObjectAttributes.Attributes = v14;

 }

 v16 = NtCreateFile(

 &FileHandle,

 ​0x100003​u,
 &ObjectAttributes,

 &IoStatusBlock,

 ​0​i64,
 ​0​,
 ​0​,
 ​3u​,
 ​32​ * (v8 & ​1​),
 EaBuffer,

 (​unsigned​ __int16)(wSizeOfContext + ​24​) + ​19​);

https://docs.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntcreatefile

Meanwhile, FilterFindFirst and FilterFindNext rely heavily on NTDLL functionality and invoke
internal functions ​FilterpDeviceIoContro​l which makes heavy usage of other low-level APIs such
as ​NtDeviceIoControlFile​ and ​NtFsControlFile​.

Here is a snippet from IDA:

 ​if​ (IoStatusBlock)
 {

 IoStatusBlock->Pointer = (PVOID)​259​;
 v13 = IoStatusBlock[​1​].Information;
 v14 = IoStatusBlock;

 ​if​ (v12 == ​9​)
 {

 ​if​ ((v13 & ​1​) != ​0​)
 v14 = ​0​i64;
 v15 = NtFsControlFile(

 Handle,

 (HANDLE)v13,

 ​0​i64,
 v14,

 IoStatusBlock,

 FsControlCode,

 InputBuffer,

 InputBufferLength,

 OutputBuffer,

 OutputBufferLength);

 }

 ​else
 {

 ​if​ ((v13 & ​1​) != ​0​)
 v14 = ​0​i64;
 v15 = NtDeviceIoControlFile(

 Handle,

 (HANDLE)v13,

 ​0​i64,
 v14,

 IoStatusBlock,

 FsControlCode,

 InputBuffer,

 InputBufferLength,

 OutputBuffer,

 OutputBufferLength);

 }

https://docs.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntdeviceiocontrolfile
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-ntfscontrolfile

This exposes a lot of really interesting internals which I encourage you to explore. Adrien
Chevalier of amossys.fr has done some research on this matter and unveiled more to this. ​You
can check out his blog entry on his research here​.

Thanks for reading. More to come soon.

https://blog.amossys.fr/filter-communication-ports.html
https://blog.amossys.fr/filter-communication-ports.html

