Infecting android applications

The new way

Foreword

Idea authors: Erbol & Thatskriptkid
Author of drawing: @alphin.fault instagram
Author of the article and proof-of-concept code: Thatskriptkid

Proof-of-Concept Link

Target audience of the article - people who have an idea of the current way of infecting android
applications through smali code patching and want to learn about a new and more effective
way. If you are not familiar with the current infection practice, read my article - How to steal
digital signature using Man-In-The-Disk, chapter - “Creating payload”. The technique described
here was completely invented by us; there is no description of such a method in the Internet.

Our technique:

1. Does not use bugs or android vulnerabilities

2. Not intended for cracking applications (removing ads, licenses, etc.).

3. Designed to add malicious code without any interference with the target application or its
appearance.

Disadvantages of the current approach

The way to inject malicious code by decoding the application to smali code and patching it is the
only and widely practiced method to date. smali/backsmali is the only tool used for this. It is the
basis for all known apk infectors, for example:

backdoor-apk.
TheFatRat

apkwash
kwetza

i

Malware also uses smali/backsmali and patching. The work algorithm of the Trojan
Android.InfectionAds.1:

https://www.instagram.com/alphin.fault
https://www.instagram.com/alphin.fault
https://github.com/thatskriptkid/apk-infector-Archinome-PoC
https://www.orderofsixangles.com/en/2019/07/17/steal-ds-en.html
https://www.orderofsixangles.com/en/2019/07/17/steal-ds-en.html
https://www.orderofsixangles.com/en/2019/07/17/steal-ds-en.html
https://github.com/JesusFreke/smali
https://github.com/JesusFreke/smali
https://github.com/dana-at-cp/backdoor-apk
https://github.com/Screetsec/TheFatRat
https://github.com/jbreed/apkwash
https://github.com/sensepost/kwetza
https://vms.drweb.com/virus/?i=17771929&lng=en
https://vms.drweb.com/virus/?i=17771929&lng=en

APK file of the application,
q distributed via app stores
com.ovilex.fs18.apk

APK file. Installed by the Trojan
as a separate application
lassets/resa.data.encry

bak zip (lassetsfontsDisplay4 jpg) | | adzip (assetsfonts/Displays.jpg)

boot zip (fassets/fonts/Displayl.jpg) | |adsdk.zip (/assets/fonts/Display2.jpg)| | patch.zip (/assets/forts/Display3.jpg)

Embeds in the infected application The main moclule of the malicious Modifies applications Code modification toolkit. Advertising module
SDK_ It controls other modules, smali/baksmali
installs applications, and sends
requests to the server.

Decoding and patching involves changing the original classesN.dex file. This leads to two
problems:

1. Overstepping the limit of 65536 methods in one DEX file if there is too much malicious
code.
2. The application can check the integrity of DEX files

DEX decoding/disassembling is a complex process that requires constant updating and highly
dependent on the android version.

Almost all available infection/modification tools are written in Java and/or depend on JVM - this
greatly narrows the scope of use and makes it impossible to launch the infectors on routers,
embedded systems, systems without JVM, etc.

Description of a new approach

There are several types of starting applications in the android, one of which is called cold start.
Cold start happens when application is started for the first time.

https://developer.android.com/studio/build/multidex#about
https://developer.android.com/studio/build/multidex#about
https://github.com/JesusFreke/smali/issues/629
https://github.com/JesusFreke/smali/issues/629
https://github.com/JesusFreke/smali/issues/595
https://github.com/JesusFreke/smali/issues/595
https://github.com/JesusFreke/smali/issues/595

Cold start

Application Object
Constructor

}

Application Object
OnCreate()

1

[Launching the Ul |
thread

.

Creating the main
activity

Applclation object creation
3

P

"

Main thread

The execution of an application starts with the creation of an Application object. Most android
applications have their own Application class, which should extends the main class
android.app.Applciation. An example of a class:

package test.pkg;
import android.app.Application;
public class TestApp extends Application {

public TestApp() {}

public void onCreate() {
super.onCreate();

The class test.pkg.TestApp should be registered in AndroidManifest.xml:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.example">

<application

android:icon="@mipmap/ic_launcher"
android:label="Test"
android:roundIcon="@mipmap/ic_launcher_round"
android:name="test.pkg.TestApp">
</application>
</manifest>

The process of launching such an application:

<?xml version="1.0" encoding="utf-8"?>

User opens app APK <manifest
xmins:android="http://schemas_android.com/apk/res/android"
l AndroidManifest.xml \ package="com.example">

<application

android:icon="@mipmap/ic_launcher"

Android gets application class test.pkg. TestApp android-label="Test"
name from AndroidManifest.xmi android:roundlcon="@mipmap/ic_launcher_round"

android-name="test.pkg.TestApp">
</application>
</manifest>
l Execute
test.pkg. TestApp.Init() test.pkg. TestApp
l Extends

android.app.Application

android.app.Application.Init()

l

test.pkg.TestApp.OnCreate()

i

android.app.Applciation.OnCreate()

The basic requirements for our infection techniques have been defined:

1. Execution of malicious code, at application launch
2. Saving all steps of the process of launching the original application

The injection of the malicious code took place at the stage of the cold start.Application Object
creation->Application Object Constructor. A malicious Application class was created, injected in
the APK and spelled out in AndroidManifest.xml, instead of the original one. To preserve the
previous execution chain, it was inherited from test.pkg.TestApp.

Malicious Application class:

package my.malicious;
import test.pkg;
public class InjectedApp extends TestApp {

public InjectedApp() {

super();
executeMaliciousPayload();

Modified AndroidManifest.xml:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.example">

<application

android:icon="@mipmap/ic_launcher"
android:label="Test"
android:roundIcon="@mipmap/ic_launcher_round"
android:name="my.malicious.InjectedApp">
</application>
</manifest>

The process of launching malicious code inside an infected application (modifications are
marked in red):

User opens aj
P pPp \\.

N
R
l \\ Infected APK <7xml version="1.0" encoding="ut{-8"?>
. <manifest
\\ xmins:android="http-//schemas android com/apk/res/android"
Android gets application class \\ AndroidManifest.xml ™ SIS0
name from AndroidManifest.xml ~ \\. <application
\ android-icon="@mipmap/ic_launcher"
= test.pkg.TestApp android:label="Test"
// *\;_ android roundlcon="@mipmap/ic_launcher_round™
— Execute g android:name="my.malicious.InjectedApp">
- 3 - ~ my.malicious.InjectedApp Al
{_executeMaliciousPayload() | my.malicious.InjectedApp.Init() </manifes>

h
my.malicious.InjectedApp

test.pkg. TestApp.Init()

| Extends

x test.pkg. TestApp

android.app.Application.Init() Estends
v android.app.Application

test.pkg. TestApp.OnCreate()

A 3

android.app.Applciation.OnCreate()

Applied modifications:

1. The class my.malicious.InjectedApp was added to the original APK
2. In AndroidManifest.xml the line test.pkg.TestApp has been replaced with
my.malicious.InjectedApp

The benefits of the new approach

It is possible to apply necessary modifications to the APK:

1. Without AndroidManifest.xml decoding/encoding
2. Without DEX dissasembling/assembling
3. Without making changes to the original DEX files

These facts allow you to infect almost any existing application without restrictions. Adding your
own class and modifying the manifest works much faster than decoding DEX. The malicious
code injected by our technology starts immediately, as we are injected right at the beginning of
the application launch process. The described infection technique doesn’t depend on the
architecture and version of the android (with a few exceptions).

The PoC for demonstration was written in Go and is capable to be extended to a full featured
tool. PoC is compiled into one binary file and does not use any runtime dependencies. Using Go
allows using cross compilation to build an infector for almost any architecture and OS.

Testing of infected APK by PoC was on:

NOX player .0.8006- .2700200616, Android .2 (API), ARMv7-
NOX player .0.8006-7.1.2700200616, Android .1 (API 22), ARMv7-
Android Studio Emulator, Android (API), X86

Android Studio Emulator, Android (API), X86

Android Studio Emulator, Android (API), x86_64

Android Studio Emulator, Android (API), Xx86

Android Studio Emulator, Android (API), X86_64

Android Studio Emulator, Android API , X86

Xiaomi Mi A1l

We managed to successfully infect a huge number of applications (for obvious reasons, the
names are hidden). We managed to successfully infect applications that cannot be decoded
using smali/backsmali, and therefore by existing tool.

Identifying necessary modifications in
AndroidManifest.xml and patching

One of the modifications required for the infection is to replace the string in
AndroidManifest.xml. It is possible to patch the string without decoding/encoding the manifest.

APKSs contain the manifest in binary encoded form. The structure of the binary manifest is
undocumented and represents a custom XML encoding algorithm from Google. For
convenience, a description was created in Kaitai Struct that can be used as documentation.

AndroidManifest.xml structure (in brackets - size in bytes):

https://github.com/thatskriptkid/Kaitai-Struct-Android-Manifest-binary-XML
https://github.com/thatskriptkid/Kaitai-Struct-Android-Manifest-binary-XML
https://kaitai.io/
https://kaitai.io/

AndroidManifest. XML

small_header
= table_id :
magic (0x2)| len (0x2) file_len (Ox4) (0x2) len (0x2) string_table_len (0x4)
: string_table_info_size
strings_count (0x4) styles_count (Ox4) flags (Ox4) (0x4)
styles_offset (0x4) sirings_offset_table (strings_count * 4)
strings_offset_table (strings_count * 4)
strings
resource_header
padding | t"’(té'%"d ‘ len (0x2) | id_len (0x4) resource_id
resource_id
xml_elements

Two applications with different class names were developed to detect changes in the manifest,
after patching the original Application class name to a malicious one. The applications were built
into an APK and unpacked to produce binary manifests.

An example of the original manifest:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.qoogle.service.outbound.thread.safe.eng.packages.packas.pack.1
evel.random">

<application
android:icon="@mipmap/ic_launcher"
android:label="MinDEX"
android:roundIcon="@mipmap/ic_launcher_round"
android:name="test.pkg.TestApp">
</application>

</manifest>

An example of a patched manifest:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.qoogle.service.outbound.thread.safe.eng.packages.packas
evel.random">

<application

android:icon="@mipmap/ic_launcher"

android:label="MinDEX"

android:roundIcon="@mipmap/ic_launcher_round"

android:name="test.pkg.TestAppAAAAAAAAA" >
</application>

</manifest>

The length of the fully-qualified class name has increased by 9 characters. Both files were
opened in HexCmp, to get the diff.

https://www.fairdell.com/hexcmp/
https://www.fairdell.com/hexcmp/

Changes to the manifest and explanation of reasons:

field

offset

description

diff_count

explanation

header file_len

Ox4

Total file
length

0x10

In the original
manifest there was
0x2 bytes of
alignment, in the
modified version they
are not required.
Strings in the binary
manifest are stored in
UTF-16 format, i.e.
one character takes
0x2 bytes.

In total, we increased
the string by 9
characters (0x12
bytes) minus 0x2
alignment bytes, it
equals to 0x10 byte
difference

header.string_table len

0xC

Length of
array of
strings

0x10

The string is in an
array of strings. The
explanation for the
0x10 byte difference
is the same as for
header file_len.

string_offset_table.offset 0x7C Offset to the 0x12 string_offset_table
line following stores offset up to
the modified strings in an array of
manifest strings.
Since the length of
the string has
increased,

the line following it
has been moved
further by 0x12 bytes.
Alignment is not
taken into account
here, as it

is located before the
array of strings.

OFFSET 00 01 02 03 04 05 06 O7 08 09 DA 0B OC OD OE OF OFFSET 00 01 02 03 04 05 06 O7 08 09 DA OB OC OD OE OF

00000000 | 03 00 06 00 3C 05 00 00 01 00 1C 00 1¢ 03 00 0a
00000010 | 17 00 00 00 OO0 00 00 OO OO0 00 OO0 00 78 OO 0O OO
00000020 | 00 00 00 00 00 00 00 OO0 OE 00 00 00 1& 0O 00 00
00000030 | 26 00 00 00 44 00 00 00 SE 00 00 00 78 00 00 00
00000040 | 9C 00 00 00 B2 00 OO OO D8 00 OO0 00 OE O1 0O OO
00000050 | 18 01 00 00 20 01 00 OO 30 01 OO0 00 42 01 00 OO0
00000060 | 5C 01 00 00 84 01 00 0O DC a1 00 00 FO O1 00 00
00000070 | 02 02 00 00 36 02 00 OO0 6A 02 OO OO BE 02 00 OO0
00000080 | 05 00 6C 00 61 00 62 00 65 00 &C 00 00 OO 04 0O
00000090 | 69 00 63 00 6F 00 6E 0O 00 00 04 00 6E 0O A1 00
000000AD | 6D 00 65 00 00 00 OD 0O 6D 00 69 00 6E 0O 53 00
000000BD | 64 00 6B 00 S6 00 65 00 72 00 73 00 &9 00 &6F OO
000000Cc0 | 6E 00 00 00 OB 00 76 00 65 00 72 00 73 00 69 00
000000D0 | 6F 00 GE 00 43 00 6F 00 64 00 65 00 00 00 OB 00
O00000ED | 76 00 85 00 72 00 73 00 69 00 eF 00 BE 0O 4E 00

00000000 | 03 00 06 00 4C 05 00 00 01 Q0 1C 00 2¢ 03 00 0d
00000010 | 17 00 00 00 O0 00 00 OO OO0 00 OO0 00 78 OO 0O OO
00000020 | 00 00 00 00 00 00 00 OO0 OE 00 00 00 1& OO0 00 00
00000030 | 26 00 00 00 44 00 00 00 SE 00 00 00 78 00 00 00
00000040 | 9C 00 00 00 B2 00 0O OO D8 00 OO0 00 OE O1 0O OO
00000050 | 18 01 00 00 20 01 00 OO 30 01 OO0 00 42 01 00 OO0
00000060 | 5C 01 00 00 84 01 00 00 DC a1 00 00 FO 01 00 00
00000070 | 02 02 00 00 36 02 00 OO0 6A 02 00 OO0 A0 02 00 OO0
00000080 | 0S 00 6C 00 61 00 82 00 65 00 6C 00 00 OO 04 0O
00000090 | 69 00 63 00 6F 00 6E 00 00 00 04 00 6E 00 A1 00
000000A0 | 6D 00 65 00 00 00 0D 00 6D OO0 69 00 6E 00 53 00
000000BOD | 64 00 6B 00 S6 00 65 00 72 00 73 00 69 00 &6F OO
000000C0 | 6E 00 00 00 OB 00 76 00 65 00 72 00 73 00 69 OO
000000D0 | 6F 00 6E 00 43 00 6F 00 64 00 65 00 00 00 OB 00

field offset description diff_count explanation

strings.len Ox2EA String length 0x9 The number of characters by which
the string has increased

000002B0 | 64 00 65 00 00 OO0 18 00 70 00 6C OO 61 00 74 00
000002¢0 | 66 00 6F 00 72 00 6D OO0 42 00 75 00 69 00 6C 00
000002D0 | 64 00 56 00 65 00 72 00 73 00 68 OO0 6F 00 GE 00
O0000ZED | 4E 00 61 00 6D 00 65 00 00 00 10 OO 74 00 65 00
O0000ZF0 | 73 00 74 00 2E 00 70 00 B 00 &7 OO ZE 00 54 00
00000300 65 00 73 00 74 00 41 00 70 00 70 OO0 00 00 08B 00 e.s.t.A.p.p..... 00000300 &5 N0 73 00 74 00 41 00 70 0D 70 00D 41 0O 41 0O
00000310 75 00 73 00 65 00 73 00 2D 00 73 00 b4 00 6B 0O 8. .d.k. pooo0310 | 41 00 41 00 41 00 41 00 41 00 41 00 41 00 00 00
00000320 | 00 00 00 00 80 O1 08 OO 30 00 OO0 00 01 00 O1 01 |B...0....... =3 e jalad "

000002B0 | 64 00 65 00 00 OO 18 00 70 OO0 &C 0O 61 00 74 00
000002C0 | 66 00 6F 00 72 00 6D OO0 42 00 75 00 69 00 6C OO0
00000200 | 64 00 S6 00 65 00 72 00 73 00 63 00 6F 00 GE 0O
000002E0 | 4E 00 61 00 6D 00 65 00 00 00 18 00 74 00 65 00
000002F0 | 73 00 74 00 2E OO 70 OO0 6B OO0 &7 OO 2ZE 00 54 00

P

2N E A e
0B oo
L RN

In the structure of the manifest given at the beginning, after strings follows padding to align

resource_header. In the original manifest, the last line of uses-sdk ends on the offset 0x322
(orange), which means that two bytes of alignment (green) for resource_header have been

added.

Offsec(h) 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF Decoded text

00000210 2F 00 2F 00 73 00 63 00 68 00 65 00 6D 00O f./.s.c.h.e.m.a.
00000220 73 00 2E 00 €61 00 6E 0O €4 00 72 00 6&F 0O S...8.0n.d.Ir.0.1.
00000230 64 00 2E 00 63 00 &F 00 6D 00 ZF 00 61 0O d...c.o.m./.a.p.
00000240 6B 00 2F 00 72 00 &5 00 73 00 2F 00 61 0O k./.r.e.a.f.a.n.
00000250 64 00 72 00 6F 00 65 00 64 00 00 00 08 0O d.r.o.i.d.....mMm.
00000260 61 00 6E 00 695 00 &6 00 &5 00 73 00 T4 00 a.n.i.f.e.s.t...
00000270 O7 00 70 00 61 00 &3 00 &B 00 61 00 &7 0O «.pP.a.c.k.a.g.e.
00000280 00 00 18 00 70 00 &C 0O 61 00 T4 00 &6 0O «aaapa.dl.a.t.f.o.
00000290 72 00 €D 00 42 00 75 00 &9 00 &C 00 64 00 r.m.B.u.i.l.d.V.
000002A0 65 00 72 00 73 00 &9 00 6F 00 6E 00 43 0O e.r.s.i.0.n.C.o0.
000002BO0 64 00 &5 00 00 00 18 00 70 00 &C 00 &1 0O d.e.....p.l.a.t.
000002C0 66 00 6&F 00 72 00 6D 00 42 00 75 00 €9 00 f.o.r.m.B.u.i.l.
000002D0 64 00 56 00 65 00 72 00 73 00 &% 00 &F 0O d.V.e.r.s.i.o0.n.
O000002EQ 4E 00 61 00 6D 00 65 00 00 00 10 00 74 0O N.a.Mm.€.....T.e.
000002FQ 73 00 74 00 2E 00 70 00 &B 00 &7 00 2E 0O 8.C...p.k.g...T.
00000300 65 00 73 00 74 00 41 00 70 00 70 00 00 0O E.5.C.A.DiPusnas
00000310 75 00 73 00 65 00 73 00 2D 00 73 00 €4 00 u.s.e.s.-.3.d.k.
00000320 IOG I”'”ICJKJ OGIBO 01 08 00 30 00 00 OGIOI 00 O T ¢ .
00000330 02 00 U1 Ol U5 00 Ul Ul OoC 02 Ul Ul 1B 02 ssasmssasEEmaaan

00000340 1C 02 01 01 70 02 01 01 2C 05 01 01 72
00000350 73 05 01 01 00 O1 10 OO0 18 00 00 OO 02 SBesnasssnannanas
00000360 FF FF FF FF OD 00 00 0O 10 00 00 0O 02 01 AAAA. s sasssnnnas
00000370 BO 00 00 00 02 00 00 0O FF FF FF FF FF FF FF FF °.......AAAAAAAA

s T o

L+ =]
=1V

In the modified version, string_table ends in offset 0x334 (orange) and then immediately follows
resource_header (red), which does not require alignment.

Offset (h)

00000240
00000250
00000280
00000270
00000280
00000250
000002A0
00000280
000002C0
000002D0
000002E0Q
000002F0
00000300
00000310
00000320
00000330
00000340
00000350
00000360
00000370
00000380
00000380
00000340

02

2F
T2
6E
70
18
&D
T2
€5
6F
=1
6l
T4
73
41
75

20 2.0 0O
DD O B

B - - |

K

Q0 0
[=

04

T2
&F
69
6l
70
42
T3
00
72
€5
&D
ZE
T4
41
T3

06

€5
69
66
63
&C
TS
€9
18
&D
T2
65
70
41
41
65

20 2.0 0O
= = T T~

B - - |

K

(= B = B = B =]
[=

oo

i [

[]
-

08

i I

fa]
[

10

FF
]

Qg

ul
0l
0l
FF
0o
0o
00

-
3

U3
70
0o

02
14
04

Ul
0l
10
00
0o
14
00

=
3

01
0o
oo
oo
oo
00

FF
o7
FF

0%
Q0
]

on

2F
0o
73
6l
74
&C
&E
&C
75
659
15
&7
70
41
2D
oo
01
0l
0o
00
FF
0o
FF

o
to

o0
{ -+ 3l -~

[
O -}

L]

[=
} O K

[

K

=)
A -

o

K

= o B =
Lo Ml - R B

K

(=B = Bl = B =
[=

i

B =
o N -

00
0o
rr
oo
FF

oc

6l
0g
74
67
66
64
43
61
€9
&F
T4
ZE
41
41
T
01
1B
T2
02
02
FF
0o
og

OE

6E
&D
00
€5
6F
56
6F
74
&C
6E
65
54
41
ele
64
01
01
0l
00
10
FF
0o
0o

[
5

[

-
[o =

o M = N
y O

[N oo

O K

[I o
Tl -

o O

y 2

I

K

- |

K

=

[o
[=

B - - |

o0
c

K

]

I
d i

Il -
3

Decoded text

R/ rmom/) A
d.r.o.i.d.....m.
an.i.f.e.s.t...
..p.a.c.k.a.g.e.
«a..p.l.a.t.f.o.
r.m.B.u.i.l.d.V.
e.r.s.i.o.n.C.o.
d.e.....p.l.a.t.
f.o.r.m.B.u.i.l.
d.V.e.r.s.i.o.n.
N.a.m.e.....t.e.
s.t...p.-k.g...T.
e.s.t.A.p.p.A.A.
A.A.A.A.A.A.A...
..u.s.e.85.~.3.d.
| SR - P § [

e s R e e

SRR v . i o
el AAARAAAA

sasssas s AHAA. 2 s s

AndroidManifest.xml structure scheme, with an indication of fields to be patched, to replace the

name of the original Applciation class with a malicious one (marked in red):

AndroidManifest. XML

small_header

‘magic (Ox2)| len (0x2) tiz'fz—)id SN sting table_len (0x4)

string_table_info_size
(Ox)

styles_offset (0x4) strings_offset_table (strings_count * 4)

strings_offset_table (strings_count * 4)

strings_count (0x4) styles count (0x4) flags (Ox4)

table_id
(0x2)

| len (0x2) ‘ id_len (0x4) resource_id

resource_id

xml_elements

The Proof-of-Concept code developed for the article implements these modifications in the
manifest.Patch() method.

Creating files to be injected in the target application

The second modification needed to infect is the injection of a class with malicious code. In order
to save the original application startup chain, an Application class must be injected into the APK,
the parent class of which must be the original Application class. At the stage of preparing the
files to be injected, it is unknown. Therefore, when creating the class, it was necessary to use
the name placeholder - z.z.z.

The initial state of the application and the DEX to be injected:

Initial state

Original APK _ _ Malicious DEX

classesN.dex
InjectedApp extends z.z.z

‘ other classes ‘
Class #2 with malicious code

‘ test.pkg. TestApp extends android.app.Applciation ‘ ‘

Class #N with malicious code

Class #1 with malicious code ‘
classesN+1.dex ‘

‘ other classes ‘

classesN+2.dex

‘ other classes ‘

After receiving the original name of the Application class from the manifest, the placeholder was
patched:

State after patching

Original APK

Malicious DEX

classesN.dex

‘ test.pkg. TestApp extends android.app.Applciation ‘

‘ other classes ‘

classesN+1.dex

‘ other classes ‘

InjectedApp extends test.pkg.TestApp

Class #1 with malicious code

Class #2 with malicious code

Class #N with malicious code

classesN+2.dex

‘ other classes ‘

The infection process ends with the addition of the malicious DEX to the target application:

State after injection

Infected APK

classesN.dex

test.pkg.TestApp extends android.app.Applciation

other classes

classesN+1.dex

other classes

classesN+2.dex

other classes

Malicious DEX

InjectedApp extends test.pkg.TestApp

Class #1 with malicious code

Class #2 with malicious code

Class #N with malicious code

Since classes with malicious code can have different code, they were put into a separate DEX.
This was also done to simplify the patching of the placeholder:

Initial malicious DEX

InjectedApp extends z.z.z

‘ Class #1 with malicious code ‘
‘ Class #2 with malicious code ‘

Class #N with malicious code

DEX with Application class DEX with payload

InjectedApp extends z.z.z ‘ Class #1 with malicious code ‘

‘ Class #2 with malicious code ‘

‘ Class #N with malicious code ‘

The class names in DEX are arranged alphabetically. The Application class name of the target
application can start with any letter. For predictable string order, after the patching, the name of
the placeholder was chosen to be z.z.z.

DEX to inject

Header
Strings

aaaaaaaa adaaaaaazaaaazaanzaa.
333333323333333333333333333333333
aaaaaaaaaazaazazzaazaa.InjectedApp

Aaaaaaaaaaza payload

L5

Other fields

To prepare the files to be injected, a project was created in Android Studio, with three classes.

Class InjectedApp. Its full name:

dddddddd.dddddddddddddddddddd.dddddddddddddddddddddddddddddddd.dddddadddadaad

aaaaaaaaaa.InjectedApp

This name must meet two rules:

1. It must be longer than any Application class name of any target application

2. It must be higher in alphabetical order of any Application Class name of any application

The InjectedApp class that will be executed instead of the Application class of the target
application:

package
2222222a.2233aaaaaaaaaaaaaaaaa.aaaaaaaaaaaaaarraaaaaaaaaaaaaaaa.aaaaaaaaaaaa
EEEEEEEEEER

import aaaaaaaaaaaa.payload;

import z.z.z;

public class InjectedApp extends z {

public InjectedApp() {
super();
payload p = new payload();
p.executePayload();

The main goal of the class is to start executing a malicious code that is in another DEX:

payload p = new payload();
p.executePayload();

The payload class contains malicious code:

package aaaaaaaaaaaa;

import android.util.lLog;

public class payload {

public void executePayload() {
Log.i("HELL", "Hello, I'm a malicious payload");

The full name of the class must satisfy the following rule:
1. It must be alphabetically higher than any Application class name of any application

To inject arbitrary malicious code, you must create a DEX file that must comply with the
conditions:

1. Contain a class with a name:
aaaaaaaaaaaaaa.payload

1. The class must contain the method
public void executePayload()

A placeholder class z.z.z, whose full name will be patched to the full name of the Applciation
class of the target application.

package z.z;

import android.app.Application;

public class z extends Application {

}

The class must comply with the conditions:

1. The full name of the class must be alphabetically lower than the full names of the
classes InjectedApp and payload

2. The full name of the class must be shorter than any of the full names of the Application
classes of any application

According to the developed injection scheme, the InjectedApp and payload classes were
compiled into separate DEXs. For this purpose, Android Studio built the APK with Android
Studio->Generate Signed Bundle/APK->release. The compiled .class files were created in the
folder app\build\intermediates\javac\release\classes.

Compile .class files into DEX, using d8:

d8 --release --min-api --no-desugaring InjectedApp.class --output .

d8 --release --min-api --no-desugaring payload.class --output .
The resulting DEX should be added to the target application.

https://developer.android.com/studio/command-line/d8
https://developer.android.com/studio/command-line/d8

Identifying the necessary modifications in DEX and
patching

After patching the placeholder z.z.z to the full name of the Application class of the target
application, the DEX structure will change. To detect modifications, two applications with class
names of different lengths were created in Android Studio.

The InjectedApp class, inherited from z.z.z, in the first application:

package
22a3aaaa.aaaaaaaaaaaaaaaaaaaa.aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa.aaaaaaaaaaaa
EEEEEEEEEER

import aaaaaaaaaaaa.payload;

import z.z.z;

public class InjectedApp extends z {

public InjectedApp() {
super();
payload p = new payload();
p.executePayload();

Class InjectedApp, inherited from z.z.zzzzzzzzzzzzzzzz7zz7z77z7 in the second application:

package

CEEEEEEE R EEEEEEEEEEEEEEEEEEEMCEEEEEEEEEEEEE L EEEEEEEEEEEEEEEEERE EEEEEEEEEEEEEEEEEEE]
EER

import aaaaaaaaaaaa.payload;

import z.z.z;

public class InjectedApp extends zzzzzzzzzzzzzzzz {

public InjectedApp() {
super();
payload p = new payload();
p.executePayload();

The length of the class name increased by 15 characters. Classes were compiled separately

into DEX:

d8 --release --min-api 16 --no-desugaring InjectedApp.class --output .

Let’s open the resulting DEX in HexCMP:

Official documentation on the DEX structure

field

offset

description

diff_count

explanation

header_item.checksum

0x8

Checksum

full

Any change in
DEX, the
checksum is
recalculated.

header_item.signature

0xC

Hash

full

Any change in
the DEX hash
is recalculated

header_item.file_size

0x20

File size

0x10

String size
increased by
OxF, plus 0x1
bytes of
alignment.

header_item.map_ off

0x34

map offset

0x10

the map goes
after an array
of strings, so
the offset was
increased,
taking into
account the
alignment

https://source.android.com/devices/tech/dalvik/dex-format

header_item.data_size

0x68

data section
size

0x10

The data
section is
located after
an array of
strings, so the
offset was
enlarged,
taking into
account the
alignment

map.class_def _item.class_data_off

OxE8

offset to class
data

OxF

This structure
does not
require
alignment, so
the value
increased by
the number of
added
characters

map_list.debug_info_item

0x114

debug info
offset

Not
important

The field
stores the
data needed
for the correct
output when it
is crashed.
The field can
be ignored.

OFFSET 00 01 02 03 04 05 06 07 08 09 0A OB OC OD QE OF
00000000 64 65 78 0A 30 33 35 00 BE 68 AB 80 31 C1 E2 2B dex.035.sh«hlEBe+
00000010 BB DA 42 BA EC D7 OF B8A A9 35 70 87 77 E3 F9 3F | <bBlmY.BO5piwan?
00000020 B8 02 00 00 70 00 OO OO 78 56 34 12 00 00 00 00 &...p...xV4.....
00000030 00 0D 0D 00 24 02 00O OO0 08 00 00 OO 70 00 0D OO0 |85....... P
00000040 04 00 00 00 90 00 0O OO 01 00 OO OO AD 00 00 OO B
00000050 00 00 00 00 00 00 OO0 OO 04 00 OO0 OO AC 00 00 00 | v.vvvnwrnennnn -,
00000060 01 00 0O OO CC 0D OO OO CC 01 00 OO EC 00O 00 OO MLLUUML LM,
00000070 1C 01 00 00 24 01 00 OO0 36 01 OO 0O 9B 01 00 00 S5...6...>.
00000080 B3 01 00 00 BC 01 00 OO BF 01 OO OO CF 01 00 00 i...j...i...0..
00000090 02 00 0D OO0 03 00 OD OO 04 DO 0D 0D DS 00 00 00 | vh e inenevenssss
000000AD 0S 00 00 0D 03 00 00 OO 00 OO0 0D OO 00 00 00 00 @ vevrrnrnnrnnrnns
0O00000BO OO0 0O OO OO 01 OD OO0 OO OO OO0 OO0 DO D1 0D 0D OO0 vhs e v nnnnnnnas
000000CO 06 00 00 0D 02 00 OO OO 00 OO0 OO OO0 00 00 00 00 @ vevvrnrnnrnnrnns
0oooo0DO 01 00 0O OO 02 00 00 OO OO0 OO0 OO0 DO D1 0D 0D OD | ves e v nnnnnnnas
OODDOOED 00 00 00 00 16 02 00 00 00 00 0D 00 02 00 01 00 vevrvnrnnrnnrnns
QODOODFO 01 00 0O OO 14 01 00 OO0 OC OO0 OO0 OO 70 10 03 0D ovwvnnnnnn s o
gopooioo 01 OO 22 0O 01 OO 70 10 01 OO0 OO0 OO0 BE 10 02 00 .."...pee... N...
00000110 00 00 OE 00 09 [0 OE 3¢ SA 00 00 00 06 3C 69 6E | B2 . $in
00000120 B9 74 3E 00 10 49 6E 62 65 63 74 65 64 41 70 70 it>..InjectedApp
OFFSET 00 01 02 03 04 05 06 O7 08 09 0OA OB OC 0D QE OF
00000000 64 65 78 DA 30 33 35 00 B3 6F 47 27 93 4D CO 6D | dex.035.coG'“MAm
00000010 3F AE 98 BD 14 60 38 BO DA 09 1B E6 B2 31 DO 85 7@ S5.°8°b..xI1P.
goooooozo C8 02 OO0 OD 70 OO OD OO 78 56 34 12 00 OO0 0D 00 HM...p...xV4.....
Qopoop30 00 0O DO OO 34 02 0D DO 08 00 0O DO 70 OO 0D OO vl A P
0poooo040 04 OO0 OO OO 90 00 OD OO 01 OO OO OO AD DO 0O OO sl e e
00000050 00 00 00 00 OO OD OO OO0 04 00 00 00 AC 00 00 00 .vuvvvnnnnn. -y
Qopoo0oe0 01 0O DO QO CC 00 OO OO DC 01 0O DO EC OO0 0D OO Moo Bl M,
gooooo7o 1€ 01 OO OO0 24 01 OO0 OO 39 D1 OO OO 9B D1 0D OO5...6...>..
00000080 B3 01 00 OO CB 01 OO OO CE O1 OO OO DE 01 00 OO0 i...NM...0...D..
00000090 02 00 00 00 03 00 OO DO 04 00 00 00 05 00 00 00 @ vevrvvvnnrnnnnns
000000AD 05 0D 00 OO D3 OO OO OO 00 OO 0D OO OO0 00 00 00 @ vvevevnnrnnnnnns
000000BO 00 00 00 00 01 00 OO OO 0O 0O OO 00 01 00 00 00 vvvvvvnennnnnnns
000000CD 06 0D 00 00 02 00 OO OO 00 0D 00 00 00 00 00 00 @ vvuvevnernnnenss
000000DD 01 00 OO0 00 02 OO OO OO OO0 0D 00 00 01 00 00 00 @ vvvevnernnnsnss
000DOOED 00 00 OO 00 25 02 OO OO 00 OO 00 00 02 0O 01 00 B e oy
000000OFD 01 00 00 00 14 01 OO OO OC DO OO 00 70 10 03 00 v.vvvuvnnn.. Pia
00000100 01 00 22 00 01 00O 70 10 01 00 OO0 DO 6E 10 02 00 W e wo Wiin
00000110 00 00 OE 00 OA 00 OE 3C SA 00 00 00 06 3C 69 6E | J.<Z....<in
00000120 69 74 3E 00 10 49 6E 6A 65 63 74 65 64 41 70 70 it>..IniectedAon
field offset | description diff_count explanation
string_data_item.utf16_size 0x1B3 | string length OxF Strings in DEX

are stored in
MUTF-8 format,
where one
character takes 1
byte.

ooooo1so | 61 &1
00000190 | BA BS
0ooo01a0 | 61 &1
00000160 | 64 3B
ooooolco | B3 78
nnnnninn @ g 7§

0oooo1aD 61 B1
000001B0 | 64 3B
0oooolco | A VA
oooooibo | 78 BS
000001ED | 7E 44
oooooiro | 2D 6D

[alatalatatetalsl ST

61 61 61 &1 B1
63 74 65 64 41
Bl bl 61 B1
DD4C 7AZF
b5 ba 73 74 B3
44 37 ¥R 77 RA

61 Bl 61 61 B1
oo 4C 7a ZF
TA JA FA 7A YA
63 75 74 B3 50
38 7B 22 B3 BF

BF b4 B3 22 3A

LR e b e e

Changes at the end of the file:

6FE asassasaasaassln
61 jectedipp:..Laaa
61 | asasaaaaa-spayloa
BE | d:. 6Lz z ZE e
45 | executePayload.E
ARF O TTNIR "romni 1atin

61 | a@acasasa-payvloa
A d;..Lz=/2 222222z
65 | EEEEEEEEZ. . V. .2
7E | xecutePayvload.E”
6E | "DE{"compilation
22 | -mode":'"release"

T IRETS ARt ny 11 b b1

field

offset

description

diff_count | explanation

map.class data_item.
offset

0x29C

offset to class data

OxF The structure
class_data_it
em follows
immediately
after an array
of strings and
does not
require
alignment

map.annotation_set_it
em.entries.annotation
_off_item

0x2A8

offset to
annotations

0x10 The
alignment is
taken into
account

map.map_list.offset

0x2B4

offset to map_list

0x10 The
alignment is
taken into
account

OFFSET 00 01 D2 O3 04 05 06 07 08 09 0A OB OC 0D OE OF

oooooz40 02 OO OO OO D4 00 OO OO 90 0O OO0 OO 03 00 OD OO0 ... uuen B cmwncns
00000250 01 0D 00 DO AD OO 0D OO OS5 00 00 OO0 04 00 00 00 | vivs wvvnnnnanns
00000260 AC 00 00 OO0 06 00 OO0 OO 01 00 OO0 OO0 CC 00 OD 00 =i vuinnnnnas M...
Q0000270 01 20 00 OO 01 OO OO OO EC 00 0O OO O3 20 OD OO, M.ouoo

00000280 (01 0D OO 00 14 01 OO OO 02 20 00 00 08 00 OD OD | vvveveene vaonns
00000290 | 1C 01 OO0 OO 0O 20 DO OD O1 OO DD 0D 16 02 00 00 | cvvve v venvnnnes
00D00ZAD | 03 10 00 00 01 0O OO0 OD 20 02 00 OD 0O 10 0D 00 | vvwvinee wvennes
000002BO 01 OO OO OO 24 02 00 OO N T

OFFSET 00 01 02 03 04 05 06 07 08 09 0A OB OC 0D OE OF

oopooz40 02 0D OO OO D4 DO OO OO 90 OO 0D OO 03 00 OD OO e ewnnn Boa wsmwscs
0opoooz50 01 OO OO DO AO DO OO OD OS5 OO OO0 OO0 04 0D 00 OO0 0 vvss e ienvnnnns
00000260 | AC OD OO DO Db DO OD OD O1 OO OD OO0 CC OD OD DD =esien e vnnnn M...
oopooz7o0 01 20 00 OO 01 OO OO OO EC OO 00 OO 03 20 OO OO M st s
0oooo2s0 01 OO OO OO 14 01 00 OO 02 20 00 OO0 OB 00 00 OO0 | ... vvvnne vovnnn
00pD002%90 | 1C 01 OO OO 0O 20 OO OD O1 OO OO OO 25 02 00D 00 ... ve vuinns B ..
oopoozap | O3 10 00 DO D1 OO OO OO 30 02 0D OD OO 10 OD OO P
00D0OOZEBO | 01 OD OO OO 34 02 00 OO RO - PN

The Proof-of-Concept code developed for the article implements these modifications in the
mydex.Patch() method.

Results

To apply the necessary modifications, we have developed PoC, which works according to the
algorithm:

Unpacking APK files

Parsing AndroidManifest.xml

Finding the name of the Application class

Patching original Application class name with

aaaaaaaa.aaaaaaaaaaaaaaaaaaaa.aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa.aaaaaaaaa

aaaaaaaaaaaaa.lnjectedApp

5. Patching of the placeholder z.z.z with the original name of the Application class

6. Adding two DEXs to APK (one with InjectedApp application class, another with malicious
classes)

7. Packing all files in new APK

PoOoDd~

Limitations of the new approach

This technique will not work with applications that meet all conditions simultaneously:

1. minSdkVersion <= 20

2. Do not use in dependencies library androidx.multidex:multidex or
com.android.support:multidex.

3. Runs on android versions lower than Android 5.0 (API level 21).

Thus, it is assumed that the application has one DEX file. The restriction applies because the
android versions before Android 5.0 (API level 21) use the Dalvik virtual machine to run the
code. By default, Dalvik only accepts a single DEX file in the APK. To get around this limitation,
you should use the above libraries. Android versions after Android 5.0 (API level 21), instead of
Dalvik, use the ART system, which natively supports multiple DEX files in an application,
because when you install an application, it will compile all DEXs into one .oat file. See official
documentation for details.

Further PoC improvements

1. If an application does not have its own Application class, you should add InjectedApp to
AndroidManifest.xml

2. Adding your tags to AndroidManifest.xml

APK signing

4. Getting rid of AndroidManifest.xml decoding

w

https://developer.android.com/studio/build/multidex
https://developer.android.com/studio/build/multidex
https://developer.android.com/studio/build/multidex

FAQ

Q: Why not use underscores in the full name of InjectedApp, so it is almost guaranteed to be
alphabetically above any name in the Application class of the target application?

A: Technically it's possible, but there will be problems with Android 5 and there will be the
following error:

D/AndroidRuntime (): Calling main entry com.android.commands.pm.Pm
D/DefContainer(): Copying /mnt/shared/App/ .apk to base.apk
W/PackageManager(): Failed parse during installPackagelI
W/PackageManager(): android.content.pm.PackageParser$PackageParserException:
/data/app/vmd11642407162.tmp/base.apk (at Binary XML file line #48): Bad class name
5 ._000000000000000000000000000VVVVVVVVOVVVVVLVLVVVVVVRRRNRVRRR.A . Inject
edApp in package XXXXXXXXXXXXXXXXXXXx
W/PackageManager(1802): at
android.content.pm.PackageParser.parseBaseApk(PackageParser.java:885)
W/PackageManager(1802): at
android.content.pm.PackageParser.parseClusterPackage(PackageParser.java:790)
W/PackageManager(1802): at
android.content.pm.PackageParser.parsePackage(PackageParser.java:754)

W/PackageManager (): at
com.android.server.pm.PackageManagerService.installPackagelLI(PackageManager

Service.java:)

W/PackageManager (): at
com.android.server.pm.PackageManagerService.access$ (PackageManagerServi
ce.java:)

W/PackageManager (): at

com.android. server.pm.PackageManagerService$6.run(PackageManagerService.jav
a:)

W/PackageManager (): at
android.os.Handler.handleCallback(Handler. java:

W/PackageManager (): at
android.os.Handler.dispatchMessage(Handler.java:95)

W/PackageManager (): at android.os.Looper.loop(Looper.java:
W/PackageManager (): at
android.os.HandlerThread.run(HandlerThread.java:61)

W/PackageManager (): at
com.android.server.ServiceThread.run(ServiceThread. java:46)

Q: Why not inject Activity and write it in the manifest instead of the main one, because it also
starts first? Yes, with this method, payload will run a little later, but it’s not critical.

A: There are two problems in this approach. The first is that there are applications that use a lot
of tags activity-alias in the manifest that refer to the name of the main activity. In this case we
will have to patch not one line in the manifest, but several. It also makes it difficult to parse and
find the name of the desired Activity. The second is that the main Activity runs in the main Ul
thread, which imposes some restrictions on the malicious code.

Q: But you can’t use services in an Application class. What kind of malicious code can there be
without services?

A: First of all, this restriction is introduced in the Android version starting with API 25. Secondly,
this limitation applies to the android applications in general, not to the Application class
specifically. Third, you can use services, but not ordinary services, but foreground.

Q: Your PoC is not working
A: In this case, make sure that:

The original application works

All file paths in PoC are correct

There’s nothing unusual in apkinfector.log.

The name of the original Application class in the patched InjectedApp.dex is really in its
place.

5. The target application uses its Application class. Otherwise, PoC inoperability is
predictable.

hwnh =

If nothing helped, try to play with the -min-api parameter when compiling classes. If nothing
worked, then create an issue on github.

Q: Why was the Application constructor selected for the infection and not the OnCreate()
method?

A: The point is that there are applications that have an Application class that has the OnCreate()
method with the final modifier. If you put your Application with OnCreate(), the android will
generate an error:

127 I ActivityManager: Start proc IXXXXXXXXX/U@ad6 for activity
XXXXXXXXX/ .Main
I art : Rejecting re-init on previously-failed class

java.lang.Class<InjectedApp>:
java.lang.LinkageError: Method void InjectedApp.onCreate() overrides final method in class LX/001;

(declaration of 'InjectedApp' appears in /data/app/xxxxxxxxx-1/base.apk:classes2.dex)

https://developer.android.com/guide/topics/manifest/activity-alias-element
https://developer.android.com/guide/topics/manifest/activity-alias-element

Reasons for the error here

if (super_method->IsFinal()) {
ThrowLinkageError(klass.Get(), "Method %s overrides final method
in class %s",

virtual method->PrettyMethod().c_str(),

super_method->GetDeclaringClassDescriptor());
return false;

The Android detects that the super method is final and gives out an error.

In Java, if you have not created any constructor, the compiler will create it for you (without
parameters). If you have created a constructor with parameters, then the constructor without
parameters is not automatically created. Since we call a constructor without parameters, you
may think that there is a problem if the target application’s app class contains a constructor with
parameters. But it is not correct because Android requires a default constructor. Otherwise, you
get this error.

D AndroidRuntime: Shutting down VM
E AndroidRuntime: FATAL EXCEPTION: main

E AndroidRuntime: Process: XXXXXXXXX, PID:

E AndroidRuntime:

java.lang.RuntimeException: Unable to instantiate application
XXXXXXXXX.YYYYYY: java.lang.InstantiationException:
java.lang.Class<xxxxxxxxx.YYYYYY> has no zero argument constructor
= :51: E AndroidRuntime: at
android.app.LoadedApk.makeApplication(LoadedApk.java

https://android.googlesource.com/platform/art/+/refs/heads/master/runtime/class_linker.cc#6640
https://android.googlesource.com/platform/art/+/refs/heads/master/runtime/class_linker.cc#6640

