
Infecting android applications

The new way

Foreword
Idea authors: Erbol & Thatskriptkid

Author of drawing: @alphin.fault​ ​instagram

Author of the article and proof-of-concept code: Thatskriptkid

Proof-of-Concept Link

Target audience of the article - people who have an idea of the current way of infecting android
applications through smali code patching and want to learn about a new and more effective
way. If you are not familiar with the current infection practice, read my article -​ ​How to steal
digital signature using Man-In-The-Disk​, chapter - “Creating payload”. The technique described
here was completely invented by us; there is no description of such a method in the Internet.

Our technique:

1. Does not use bugs or android vulnerabilities
2. Not intended for cracking applications (removing ads, licenses, etc.).
3. Designed to add malicious code without any interference with the target application or its

appearance.

Disadvantages of the current approach
The way to inject malicious code by decoding the application to smali code and patching it is the
only and widely practiced method to date.​ ​smali/backsmali​ is the only tool used for this. It is the
basis for all known apk infectors, for example:

1. backdoor-apk​.
2. TheFatRat
3. apkwash
4. kwetza

Malware also uses smali/backsmali and patching. The work algorithm of the Trojan
Android.InfectionAds.1​:

https://www.instagram.com/alphin.fault
https://www.instagram.com/alphin.fault
https://github.com/thatskriptkid/apk-infector-Archinome-PoC
https://www.orderofsixangles.com/en/2019/07/17/steal-ds-en.html
https://www.orderofsixangles.com/en/2019/07/17/steal-ds-en.html
https://www.orderofsixangles.com/en/2019/07/17/steal-ds-en.html
https://github.com/JesusFreke/smali
https://github.com/JesusFreke/smali
https://github.com/dana-at-cp/backdoor-apk
https://github.com/Screetsec/TheFatRat
https://github.com/jbreed/apkwash
https://github.com/sensepost/kwetza
https://vms.drweb.com/virus/?i=17771929&lng=en
https://vms.drweb.com/virus/?i=17771929&lng=en

Decoding and patching involves changing the original classesN.dex file. This leads to two
problems:

1. Overstepping​ ​the limit of 65536​ methods​ ​in one DEX file​ if there is too much malicious
code.

2. The application can check the integrity of DEX files

DEX decoding/disassembling is a complex process that requires constant updating and​ ​highly
dependent on the android version​.

Almost all available infection/modification tools are written in Java and/or depend on JVM - this
greatly narrows the scope of use and makes it impossible to launch the infectors on routers,
embedded systems, systems without JVM, etc.

Description of a new approach
There are several types of starting applications in the android, one of which is called cold start.
Cold start happens when application is started for the first time.

https://developer.android.com/studio/build/multidex#about
https://developer.android.com/studio/build/multidex#about
https://github.com/JesusFreke/smali/issues/629
https://github.com/JesusFreke/smali/issues/629
https://github.com/JesusFreke/smali/issues/595
https://github.com/JesusFreke/smali/issues/595
https://github.com/JesusFreke/smali/issues/595

The execution of an application starts with the creation of an Application object. Most android
applications have their own Application class, which should extends the main class
android.app.Applciation. An example of a class:

package​ test.pkg;
import​ android.app.Application;
public​ ​class​ ​TestApp​ ​extends​ ​Application​ {

 ​public​ ​TestApp​() {}

 ​@Override
 ​public​ ​void​ ​onCreate​() {
 ​super​.onCreate();
 }

}

The class test.pkg.TestApp should be registered in AndroidManifest.xml:

<?xml version=​"1.0"​ encoding=​"utf-8"​?>
<manifest xmlns:android=​"http://schemas.android.com/apk/res/android"
 ​package​=​"com.example"​>

 <application

 android:icon=​"@mipmap/ic_launcher"
 android:label=​"Test"
 android:roundIcon=​"@mipmap/ic_launcher_round"
 android:name=​"test.pkg.TestApp"​>
 </application>

</manifest>

The process of launching such an application:

The basic requirements for our infection techniques have been defined:

1. Execution of malicious code, at application launch
2. Saving all steps of the process of launching the original application

The injection of the malicious code took place at the stage of the ​cold start​:​Application Object
creation->Application Object Constructor​. A malicious Application class was created, injected in
the APK and spelled out in ​AndroidManifest.xml​, instead of the original one. To preserve the
previous execution chain, it was inherited from test.pkg.TestApp.

Malicious Application class:

package​ my.malicious;
import​ test.pkg;
public​ ​class​ ​InjectedApp​ ​extends​ ​TestApp​ {

 ​public​ ​InjectedApp​() {
 ​super​();
 executeMaliciousPayload();

 }

}

Modified AndroidManifest.xml:

<?xml version=​"1.0"​ encoding=​"utf-8"​?>
<manifest xmlns:android=​"http://schemas.android.com/apk/res/android"
 ​package​=​"com.example"​>

 <application

 android:icon=​"@mipmap/ic_launcher"
 android:label=​"Test"
 android:roundIcon=​"@mipmap/ic_launcher_round"
 android:name=​"my.malicious.InjectedApp"​>
 </application>

</manifest>

The process of launching malicious code inside an infected application (modifications are
marked in red):

Applied modifications:

1. The class my.malicious.InjectedApp was added to the original APK
2. In AndroidManifest.xml the line test.pkg.TestApp has been replaced with

my.malicious.InjectedApp

The benefits of the new approach
It is possible to apply necessary modifications to the APK:

1. Without AndroidManifest.xml decoding/encoding
2. Without DEX dissasembling/assembling
3. Without making changes to the original DEX files

These facts allow you to infect almost any existing application without restrictions. Adding your
own class and modifying the manifest works much faster than decoding DEX. The malicious
code injected by our technology starts immediately, as we are injected right at the beginning of
the application launch process. The described infection technique doesn’t depend on the
architecture and version of the android (with a few exceptions).

The PoC for demonstration was written in Go and is capable to be extended to a full featured
tool. PoC is compiled into one binary file and does not use any runtime dependencies. Using Go
allows using cross compilation to build an infector for almost any architecture and OS.

Testing of infected APK by PoC was on:

NOX player ​6.6​.0.8006-​7.1​.2700200616, Android ​7.1​.2 (API ​25​), ARMv7-​32

NOX player ​6.6​.0.8006-​7.1​.2700200616, Android ​5.1​.1 (API ​22​), ARMv7-​32

Android Studio Emulator, Android ​5.0​ (API ​21​), x86

Android Studio Emulator, Android ​7.0​ (API ​24​), x86

Android Studio Emulator, Android ​9.0​ (API ​28​), x86_64

Android Studio Emulator, Android ​10.0​ (API ​29​), x86

Android Studio Emulator, Android ​10.0​ (API ​29​), x86_64

Android Studio Emulator, Android API ​30​, x86

Xiaomi Mi A1

We managed to successfully infect a huge number of applications (for obvious reasons, the
names are hidden). We managed to successfully infect applications that cannot be decoded
using smali/backsmali, and therefore by existing tool.

Identifying necessary modifications in
AndroidManifest.xml and patching
One of the modifications required for the infection is to replace the string in
AndroidManifest.xml. It is possible to patch the string without decoding/encoding the manifest.

APKs contain the manifest in binary encoded form. The structure of the binary manifest is
undocumented and represents a custom XML encoding algorithm from Google. For
convenience,​ ​a description was created​ in​ ​Kaitai Struct​ that can be used as documentation.

AndroidManifest.xml structure (in brackets - size in bytes):

https://github.com/thatskriptkid/Kaitai-Struct-Android-Manifest-binary-XML
https://github.com/thatskriptkid/Kaitai-Struct-Android-Manifest-binary-XML
https://kaitai.io/
https://kaitai.io/

Two applications with different class names were developed to detect changes in the manifest,
after patching the original Application class name to a malicious one. The applications were built
into an APK and unpacked to produce binary manifests.

An example of the original manifest:

<?xml version=​"1.0"​ encoding=​"utf-8"​?>
<manifest xmlns:android=​"http://schemas.android.com/apk/res/android"

package​=​"com.qoogle.service.outbound.thread.safe.eng.packages.packas.pack.l
evel.random"​>

 <application

 android:icon=​"@mipmap/ic_launcher"
 android:label=​"MinDEX"
 android:roundIcon=​"@mipmap/ic_launcher_round"
 android:name=​"test.pkg.TestApp"​>
 </application>

</manifest>

An example of a patched manifest:

<?xml version=​"1.0"​ encoding=​"utf-8"​?>
<manifest xmlns:android=​"http://schemas.android.com/apk/res/android"

package​=​"com.qoogle.service.outbound.thread.safe.eng.packages.packas.pack.l
evel.random"​>

 <application

 android:icon=​"@mipmap/ic_launcher"
 android:label=​"MinDEX"
 android:roundIcon=​"@mipmap/ic_launcher_round"
 android:name=​"test.pkg.TestAppAAAAAAAAA"​>
 </application>

</manifest>

The length of the fully-qualified class name has increased by 9 characters. Both files were
opened in​ ​HexCmp​, to get the diff.

https://www.fairdell.com/hexcmp/
https://www.fairdell.com/hexcmp/

Changes to the manifest and explanation of reasons:

. .

field offset description diff_count explanation

header.file_len 0x4 Total file
length

0x10 In the original
manifest there was
0x2 bytes of
alignment, in the
modified version they
are not required.
Strings in the binary
manifest are stored in
UTF-16 format, i.e.
one character takes
0x2 bytes.
In total, we increased
the string by 9
characters (0x12
bytes) minus 0x2
alignment bytes, it
equals to 0x10 byte
difference

header.string_table_len 0xC Length of
array of
strings

0x10 The string is in an
array of strings. The
explanation for the
0x10 byte difference
is the same as for
header.file_len.

string_offset_table.offset 0x7C Offset to the
line following
the modified

0x12 string_offset_table
stores offset up to
strings in an array of
manifest strings.
Since the length of
the string has
increased,
the line following it
has been moved
further by 0x12 bytes.
Alignment is not
taken into account
here, as it
is located before the
array of strings.

field offset description diff_count explanation

strings.len 0x2EA String length 0x9 The number of characters by which
the string has increased

In the structure of the manifest given at the beginning, after strings follows padding to align
resource_header. In the original manifest, the last line of uses-sdk ends on the offset 0x322
(orange), which means that two bytes of alignment (green) for resource_header have been
added.

In the modified version, string_table ends in offset 0x334 (orange) and then immediately follows
resource_header (red), which does not require alignment.

AndroidManifest.xml structure scheme, with an indication of fields to be patched, to replace the
name of the original Applciation class with a malicious one (marked in red):

The Proof-of-Concept code developed for the article implements these modifications in the
manifest.Patch() method.

Creating files to be injected in the target application
The second modification needed to infect is the injection of a class with malicious code. In order
to save the original application startup chain, an Application class must be injected into the APK,
the parent class of which must be the original Application class. At the stage of preparing the
files to be injected, it is unknown. Therefore, when creating the class, it was necessary to use
the name placeholder - z.z.z.

The initial state of the application and the DEX to be injected:

After receiving the original name of the Application class from the manifest, the placeholder was
patched:

The infection process ends with the addition of the malicious DEX to the target application:

Since classes with malicious code can have different code, they were put into a separate DEX.
This was also done to simplify the patching of the placeholder:

The class names in DEX are arranged alphabetically. The Application class name of the target
application can start with any letter. For predictable string order, after the patching, the name of
the placeholder was chosen to be z.z.z.

To prepare the files to be injected, a project was created in Android Studio, with three classes.

Class InjectedApp. Its full name:

aaaaaaaa.aaaaaaaaaaaaaaaaaaaa.aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa.aaaaaaaaaaaa

aaaaaaaaaa.InjectedApp

This name must meet two rules:

1. It must be longer than any Application class name of any target application

2. It must be higher in alphabetical order of any Application Class name of any application

The InjectedApp class that will be executed instead of the Application class of the target
application:

package

aaaaaaaa.aaaaaaaaaaaaaaaaaaaa.aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa.aaaaaaaaaaaa

aaaaaaaaaa;

import​ aaaaaaaaaaaa.payload;
import​ z.z.z;

public​ ​class​ ​InjectedApp​ ​extends​ ​z​ {

 ​public​ ​InjectedApp​() {
 ​super​();
 payload p = ​new​ payload();
 p.executePayload();

 }

}

The main goal of the class is to start executing a malicious code that is in another DEX:

 payload p = ​new​ payload();
 p.executePayload();

The payload class contains malicious code:

package​ aaaaaaaaaaaa;

import​ android.util.Log;

public​ ​class​ ​payload​ {

 ​public​ ​void​ ​executePayload​() {
 Log.i(​"HELL"​, ​"Hello, I'm a malicious payload"​);
 }

}

The full name of the class must satisfy the following rule:

1. It must be alphabetically higher than any Application class name of any application

To inject arbitrary malicious code, you must create a DEX file that must comply with the
conditions:

1. Contain a class with a name:

aaaaaaaaaaaaaa.payload

1. The class must contain the method

public void executePayload()

A placeholder class z.z.z, whose full name will be patched to the full name of the Applciation
class of the target application.

package​ z.z;

import​ android.app.Application;

public​ ​class​ ​z​ ​extends​ ​Application​ {
}

The class must comply with the conditions:

1. The full name of the class must be alphabetically lower than the full names of the
classes InjectedApp and payload

2. The full name of the class must be shorter than any of the full names of the Application
classes of any application

According to the developed injection scheme, the InjectedApp and payload classes were
compiled into separate DEXs. For this purpose, Android Studio built the APK with Android
Studio->Generate Signed Bundle/APK->release. The compiled .class files were created in the
folder app\build\intermediates\javac\release\classes.

Compile .class files into DEX, using​ ​d8​:

d8 --release --min-api ​16​ --no-desugaring InjectedApp.class --output .
d8 --release --min-api ​16​ --no-desugaring payload.class --output .
The resulting DEX should be added to the target application.

https://developer.android.com/studio/command-line/d8
https://developer.android.com/studio/command-line/d8

Identifying the necessary modifications in DEX and
patching
After patching the placeholder z.z.z to the full name of the Application class of the target
application, the DEX structure will change. To detect modifications, two applications with class
names of different lengths were created in Android Studio.

The InjectedApp class, inherited from z.z.z, in the first application:

package

aaaaaaaa.aaaaaaaaaaaaaaaaaaaa.aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa.aaaaaaaaaaaa

aaaaaaaaaa;

import​ aaaaaaaaaaaa.payload;
import​ z.z.z;

public​ ​class​ ​InjectedApp​ ​extends​ ​z​ {

 ​public​ ​InjectedApp​() {
 ​super​();
 payload p = ​new​ payload();
 p.executePayload();

 }

}

Class InjectedApp, inherited from z.z.zzzzzzzzzzzzzzzzzzzzzzzz in the second application:

package

aaaaaaaa.aaaaaaaaaaaaaaaaaaaa.aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa.aaaaaaaaaaaaaaaaaaaa

aa;

import​ aaaaaaaaaaaa.payload;
import​ z.z.z;

public​ ​class​ ​InjectedApp​ ​extends​ ​zzzzzzzzzzzzzzzz​ {

 ​public​ ​InjectedApp​() {
 ​super​();
 payload p = ​new​ payload();
 p.executePayload();

 }

}

The length of the class name increased by 15 characters. Classes were compiled separately
into DEX:

d8 --release --min-api ​16​ --no-desugaring InjectedApp.class --output .

Let’s open the resulting DEX in HexCMP:

Official documentation on the DEX structure

field offset description diff_count explanation

header_item.checksum 0x8 Checksum full Any change in
DEX, the
checksum is
recalculated.

header_item.signature 0xC Hash full Any change in
the DEX hash
is recalculated

header_item.file_size 0x20 File size 0x10 String size
increased by
0xF, plus 0x1
bytes of
alignment.

header_item.map_off 0x34 map offset 0x10 the map goes
after an array
of strings, so
the offset was
increased,
taking into
account the
alignment

https://source.android.com/devices/tech/dalvik/dex-format

header_item.data_size 0x68 data section
size

0x10 The data
section is
located after
an array of
strings, so the
offset was
enlarged,
taking into
account the
alignment

map.class_def_item.class_data_off 0xE8 offset to class
data

0xF This structure
does not
require
alignment, so
the value
increased by
the number of
added
characters

map_list.debug_info_item 0x114 debug info
offset

Not
important

The field
stores the
data needed
for the correct
output when it
is crashed.
The field can
be ignored.

field offset description diff_count explanation

string_data_item.utf16_size 0x1B3 string length 0xF Strings in DEX
are stored in
MUTF-8 format,
where one
character takes 1
byte.

Changes at the end of the file:

field offset description diff_count explanation

map.class_data_item.
offset

0x29C offset to class data 0xF The structure
class_data_it
em follows
immediately
after an array
of strings and
does not
require
alignment

map.annotation_set_it
em.entries.annotation
_off_item

0x2A8 offset to
annotations

0x10 The
alignment is
taken into
account

map.map_list.offset 0x2B4 offset to map_list 0x10 The
alignment is
taken into
account

The Proof-of-Concept code developed for the article implements these modifications in the
mydex.Patch() method.

Results
To apply the necessary modifications, we have developed PoC, which works according to the
algorithm:

1. Unpacking APK files
2. Parsing AndroidManifest.xml
3. Finding the name of the Application class
4. Patching original Application class name with

aaaaaaaa.aaaaaaaaaaaaaaaaaaaa.aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa.aaaaaaaaa
aaaaaaaaaaaaa.InjectedApp

5. Patching of the placeholder z.z.z with the original name of the Application class
6. Adding two DEXs to APK (one with InjectedApp application class, another with malicious

classes)
7. Packing all files in new APK

Limitations of the new approach
This technique will not work with applications that meet all conditions simultaneously:

1. minSdkVersion <= 20
2. Do not use in dependencies library androidx.multidex:multidex or

com.android.support:multidex.
3. Runs on android versions lower than Android 5.0 (API level 21).

Thus, it is assumed that the application has one DEX file. The restriction applies because the
android versions before Android 5.0 (API level 21) use the Dalvik virtual machine to run the
code. By default, Dalvik only accepts a single DEX file in the APK. To get around this limitation,
you should use the above libraries. Android versions after Android 5.0 (API level 21), instead of
Dalvik, use the ART system, which natively supports multiple DEX files in an application,
because when you install an application, it will compile all DEXs into one .oat file. See​ ​official
documentation​ for details.

Further PoC improvements
1. If an application does not have its own Application class, you should add InjectedApp to

AndroidManifest.xml
2. Adding your tags to AndroidManifest.xml
3. APK signing
4. Getting rid of AndroidManifest.xml decoding

https://developer.android.com/studio/build/multidex
https://developer.android.com/studio/build/multidex
https://developer.android.com/studio/build/multidex

FAQ
Q: Why not use underscores in the full name of InjectedApp, so it is almost guaranteed to be
alphabetically above any name in the Application class of the target application?

A: Technically it’s possible, but there will be problems with Android 5 and there will be the
following error:

D/AndroidRuntime(​3891​): Calling main entry com.android.commands.pm.Pm
D/DefContainer(​3414​): Copying /mnt/shared/App/​20200629234847850​.apk to base.apk
W/PackageManager(​1802​): Failed parse during installPackageLI
W/PackageManager(​1802​): android.content.pm.PackageParser$PackageParserException:
/data/app/vmdl1642407162.tmp/base.apk (at Binary XML file line #​48​): Bad ​class​ ​name
________​.​__________​.​_00​.​Inject
edApp​ ​in​ ​package​ ​XXXXXXXXXXXXXXXXXXXx
W​/​PackageManager​(1802): ​at
android​.​content​.​pm​.​PackageParser​.​parseBaseApk​(​PackageParser​.​java​:885)
W​/​PackageManager​(1802): ​at
android​.​content​.​pm​.​PackageParser​.​parseClusterPackage​(​PackageParser​.​java​:790)
W​/​PackageManager​(1802): ​at
android​.​content​.​pm​.​PackageParser​.​parsePackage​(​PackageParser​.​java​:754)

W/PackageManager(​1802​): at
com.android.server.pm.PackageManagerService.installPackageLI(PackageManager

Service.java:​10816​)
W/PackageManager(​1802​): at
com.android.server.pm.PackageManagerService.access$​2300​(PackageManagerServi
ce.java:​236​)
W/PackageManager(​1802​): at
com.android.server.pm.PackageManagerService$​6​.run(PackageManagerService.jav
a:​8888​)
W/PackageManager(​1802​): at
android.os.Handler.handleCallback(Handler.java:​739​)
W/PackageManager(​1802​): at
android.os.Handler.dispatchMessage(Handler.java:​95​)
W/PackageManager(​1802​): at android.os.Looper.loop(Looper.java:​135​)
W/PackageManager(​1802​): at
android.os.HandlerThread.run(HandlerThread.java:​61​)
W/PackageManager(​1802​): at
com.android.server.ServiceThread.run(ServiceThread.java:​46​)

Q: Why not inject Activity and write it in the manifest instead of the main one, because it also
starts first? Yes, with this method, payload will run a little later, but it’s not critical.

A: There are two problems in this approach. The first is that there are applications that use a lot
of tags​ ​activity-alias​ in the manifest that refer to the name of the main activity. In this case we
will have to patch not one line in the manifest, but several. It also makes it difficult to parse and
find the name of the desired Activity. The second is that the main Activity runs in the main UI
thread, which imposes some restrictions on the malicious code.

Q: But you can’t use services in an Application class. What kind of malicious code can there be
without services?

A: First of all, this restriction is introduced in the Android version starting with API 25. Secondly,
this limitation applies to the android applications in general, not to the Application class
specifically. Third, you can use services, but not ordinary services, but foreground.

Q: Your PoC is not working

A: In this case, make sure that:

1. The original application works
2. All file paths in PoC are correct
3. There’s nothing unusual in apkinfector.log.
4. The name of the original Application class in the patched InjectedApp.dex is really in its

place.
5. The target application uses its Application class. Otherwise, PoC inoperability is

predictable.

If nothing helped, try to play with the -min-api parameter when compiling classes. If nothing
worked, then create an issue on github.

Q: Why was the Application constructor selected for the infection and not the OnCreate()
method?

A: The point is that there are applications that have an Application class that has the OnCreate()
method with the final modifier. If you put your Application with OnCreate(), the android will
generate an error:

06​-​28​ ​07​:​27​:​59.770​ ​2153​ ​4539​ I ActivityManager: Start proc ​6787​:xxxxxxxxx/u0a46 ​for​ activity
xxxxxxxxx/.Main

06​-​28​ ​07​:​27​:​59.813​ ​6787​ ​6787​ I art : Rejecting re-init on previously-failed ​class
java​.​lang​.​Class​<​InjectedApp​>:
 ​java​.​lang​.​LinkageError​: ​Method​ ​void​ ​InjectedApp​.​onCreate​() ​overrides​ ​final​ ​method​ ​in​ ​class​ ​LX​/001;
(declaration of ​'InjectedApp'​ appears in /data/app/xxxxxxxxx-​1​/base.apk:classes2.dex)

https://developer.android.com/guide/topics/manifest/activity-alias-element
https://developer.android.com/guide/topics/manifest/activity-alias-element

Reasons for the error​ ​here

if​ (super_method->IsFinal()) {
 ThrowLinkageError(klass.Get(), ​"Method %s overrides final method
in class %s"​,
 virtual_method->PrettyMethod().c_str(),

 super_method->GetDeclaringClassDescriptor());

 ​return​ ​false​;
 }

The Android detects that the super method is final and gives out an error.

In Java, if you have not created any constructor, the compiler will create it for you (without
parameters). If you have created a constructor with parameters, then the constructor without
parameters is not automatically created. Since we call a constructor without parameters, you
may think that there is a problem if the target application’s app class contains a constructor with
parameters. But it is not correct because Android requires a default constructor. Otherwise, you
get this error.

06​-​28​ ​08​:​51​:​54.647​ ​8343​ ​8343​ D AndroidRuntime: Shutting down VM
06​-​28​ ​08​:​51​:​54.647​ ​8343​ ​8343​ E AndroidRuntime: FATAL EXCEPTION: main
06​-​28​ ​08​:​51​:​54.647​ ​8343​ ​8343​ E AndroidRuntime: Process: xxxxxxxxx, PID:
8343

06​-​28​ ​08​:​51​:​54.647​ ​8343​ ​8343​ E AndroidRuntime:
java.lang.RuntimeException: Unable to instantiate application

xxxxxxxxx.YYYYYY: java.lang.InstantiationException:

java.lang.Class<xxxxxxxxx.YYYYYY> has no zero argument constructor

06​-​28​ ​08​:​51​:​54.647​ ​8343​ ​8343​ E AndroidRuntime: at
android.app.LoadedApk.makeApplication(LoadedApk.java

https://android.googlesource.com/platform/art/+/refs/heads/master/runtime/class_linker.cc#6640
https://android.googlesource.com/platform/art/+/refs/heads/master/runtime/class_linker.cc#6640

