prototooth/s110_nrf51_8.0.0/s110_nrf51_8.0.0_API/include/ble.h

456 lines
22 KiB
C
Raw Normal View History

/*
* Copyright (c) Nordic Semiconductor ASA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* 4. This software must only be used in a processor manufactured by Nordic
* Semiconductor ASA, or in a processor manufactured by a third party that
* is used in combination with a processor manufactured by Nordic Semiconductor.
*
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/**
@addtogroup BLE_COMMON BLE SoftDevice Common
@{
@defgroup ble_api Events, type definitions and API calls
@{
@brief Module independent events, type definitions and API calls for the BLE SoftDevice.
*/
#ifndef BLE_H__
#define BLE_H__
#include "ble_ranges.h"
#include "ble_types.h"
#include "ble_gap.h"
#include "ble_l2cap.h"
#include "ble_gatt.h"
#include "ble_gattc.h"
#include "ble_gatts.h"
/** @addtogroup BLE_COMMON_ENUMERATIONS Enumerations
* @{ */
/**
* @brief Common API SVC numbers.
*/
enum BLE_COMMON_SVCS
{
SD_BLE_ENABLE = BLE_SVC_BASE, /**< Enable and initialize the BLE stack */
SD_BLE_EVT_GET, /**< Get an event from the pending events queue. */
SD_BLE_TX_BUFFER_COUNT_GET, /**< Get the total number of available application transmission buffers from the BLE stack. */
SD_BLE_UUID_VS_ADD, /**< Add a Vendor Specific UUID. */
SD_BLE_UUID_DECODE, /**< Decode UUID bytes. */
SD_BLE_UUID_ENCODE, /**< Encode UUID bytes. */
SD_BLE_VERSION_GET, /**< Get the local version information (company id, Link Layer Version, Link Layer Subversion). */
SD_BLE_USER_MEM_REPLY, /**< User Memory Reply. */
SD_BLE_OPT_SET, /**< Set a BLE option. */
SD_BLE_OPT_GET, /**< Get a BLE option. */
};
/**
* @brief BLE Module Independent Event IDs.
*/
enum BLE_COMMON_EVTS
{
BLE_EVT_TX_COMPLETE = BLE_EVT_BASE, /**< Transmission Complete. @ref ble_evt_tx_complete_t */
BLE_EVT_USER_MEM_REQUEST, /**< User Memory request. @ref ble_evt_user_mem_request_t */
BLE_EVT_USER_MEM_RELEASE /**< User Memory release. @ref ble_evt_user_mem_release_t */
};
/**@brief Common Option IDs.
* IDs that uniquely identify a common option.
*/
enum BLE_COMMON_OPTS
{
BLE_COMMON_OPT_RADIO_CPU_MUTEX = BLE_OPT_BASE /**< Radio CPU mutex option. @ref ble_common_opt_radio_cpu_mutex_t */
};
/** @} */
/** @addtogroup BLE_COMMON_DEFINES Defines
* @{ */
/** @brief Required pointer alignment for BLE Events.
*/
#define BLE_EVTS_PTR_ALIGNMENT 4
/** @defgroup BLE_USER_MEM_TYPES User Memory Types
* @{ */
#define BLE_USER_MEM_TYPE_INVALID 0x00 /**< Invalid User Memory Types. */
#define BLE_USER_MEM_TYPE_GATTS_QUEUED_WRITES 0x01 /**< User Memory for GATTS queued writes. */
/** @} */
/** @brief Maximum number of Vendor Specific UUIDs.
*/
#define BLE_UUID_VS_MAX_COUNT 10
/** @} */
/** @addtogroup BLE_COMMON_STRUCTURES Structures
* @{ */
/**@brief User Memory Block. */
typedef struct
{
uint8_t *p_mem; /**< Pointer to the start of the user memory block. */
uint16_t len; /**< Length in bytes of the user memory block. */
} ble_user_mem_block_t;
/**
* @brief Event structure for @ref BLE_EVT_TX_COMPLETE.
*/
typedef struct
{
uint8_t count; /**< Number of packets transmitted. */
} ble_evt_tx_complete_t;
/**@brief Event structure for @ref BLE_EVT_USER_MEM_REQUEST. */
typedef struct
{
uint8_t type; /**< User memory type, see @ref BLE_USER_MEM_TYPES. */
} ble_evt_user_mem_request_t;
/**@brief Event structure for @ref BLE_EVT_USER_MEM_RELEASE. */
typedef struct
{
uint8_t type; /**< User memory type, see @ref BLE_USER_MEM_TYPES. */
ble_user_mem_block_t mem_block; /**< User memory block */
} ble_evt_user_mem_release_t;
/**@brief Event structure for events not associated with a specific function module. */
typedef struct
{
uint16_t conn_handle; /**< Connection Handle on which this event occurred. */
union
{
ble_evt_tx_complete_t tx_complete; /**< Transmission Complete. */
ble_evt_user_mem_request_t user_mem_request; /**< User Memory Request Event Parameters. */
ble_evt_user_mem_release_t user_mem_release; /**< User Memory Release Event Parameters. */
} params;
} ble_common_evt_t;
/**@brief BLE Event header. */
typedef struct
{
uint16_t evt_id; /**< Value from a BLE_<module>_EVT series. */
uint16_t evt_len; /**< Length in octets excluding this header. */
} ble_evt_hdr_t;
/**@brief Common BLE Event type, wrapping the module specific event reports. */
typedef struct
{
ble_evt_hdr_t header; /**< Event header. */
union
{
ble_common_evt_t common_evt; /**< Common Event, evt_id in BLE_EVT_* series. */
ble_gap_evt_t gap_evt; /**< GAP originated event, evt_id in BLE_GAP_EVT_* series. */
ble_l2cap_evt_t l2cap_evt; /**< L2CAP originated event, evt_id in BLE_L2CAP_EVT* series. */
ble_gattc_evt_t gattc_evt; /**< GATT client originated event, evt_id in BLE_GATTC_EVT* series. */
ble_gatts_evt_t gatts_evt; /**< GATT server originated event, evt_id in BLE_GATTS_EVT* series. */
} evt;
} ble_evt_t;
/**
* @brief Version Information.
*/
typedef struct
{
uint8_t version_number; /**< Link Layer Version number for BT 4.1 spec is 7 (https://www.bluetooth.org/en-us/specification/assigned-numbers/link-layer). */
uint16_t company_id; /**< Company ID, Nordic Semiconductor's company ID is 89 (0x0059) (https://www.bluetooth.org/apps/content/Default.aspx?doc_id=49708). */
uint16_t subversion_number; /**< Link Layer Sub Version number, corresponds to the SoftDevice Config ID or Firmware ID (FWID). */
} ble_version_t;
/**@brief Mutual exclusion of radio activity and CPU execution.
*
* This option configures the application's access to the CPU when the radio is active. The
* application can configure itself to be blocked from using the CPU while the radio is
* active. By default, the application will be able to share CPU time with the SoftDevice
* during radio activity. This parameter structure is used together with @ref sd_ble_opt_set
* to configure the @ref BLE_COMMON_OPT_RADIO_CPU_MUTEX option.
*
* @note Note that the application should use this option to configure the SoftDevice to block the
* CPU during radio activity (i.e enable mutual exclusion) when running the SoftDevice on
* hardware affected by PAN #44 "CCM may exceed real time requirements"and PAN #45 "AAR may
* exceed real time requirements".
*
* @note Note that when acting as a scanner, the mutex is only enabled for radio TX activity.
*
* @note @ref sd_ble_opt_get is not supported for this option.
*
*/
typedef struct
{
uint8_t enable : 1; /**< Enable mutual exclusion of radio activity and the CPU execution. */
} ble_common_opt_radio_cpu_mutex_t;
/**@brief Option structure for common options. */
typedef union
{
ble_common_opt_radio_cpu_mutex_t radio_cpu_mutex; /**< Parameters for the option for the mutual exclusion of radio activity and CPU execution. */
} ble_common_opt_t;
/**@brief Common BLE Option type, wrapping the module specific options. */
typedef union
{
ble_common_opt_t common_opt; /**< Common option, opt_id in BLE_COMMON_OPT_* series. */
ble_gap_opt_t gap_opt; /**< GAP option, opt_id in BLE_GAP_OPT_* series. */
} ble_opt_t;
/**
* @brief BLE GATTS init options
*/
typedef struct
{
ble_gatts_enable_params_t gatts_enable_params; /**< GATTS init options @ref ble_gatts_enable_params_t. */
} ble_enable_params_t;
/** @} */
/** @addtogroup BLE_COMMON_FUNCTIONS Functions
* @{ */
/**@brief Enable the BLE stack
*
* @param[in] p_ble_enable_params Pointer to ble_enable_params_t
*
* @details This call initializes the BLE stack, no other BLE related function can be called before this one.
*
* @return @ref NRF_SUCCESS BLE the BLE stack has been initialized successfully
* @retval @ref NRF_ERROR_INVALID_STATE the BLE stack had already been initialized and cannot be reinitialized.
* @return @ref NRF_ERROR_INVALID_ADDR Invalid or not sufficiently aligned pointer supplied.
* @return @ref NRF_ERROR_INVALID_LENGTH The specified Attribute Table size is either too small or not a multiple of 4.
* The minimum acceptable size is defined by @ref BLE_GATTS_ATTR_TAB_SIZE_MIN.
* @return @ref NRF_ERROR_NO_MEM The Attribute Table size is too large. Decrease size in @ref ble_gatts_enable_params_t.
*/
SVCALL(SD_BLE_ENABLE, uint32_t, sd_ble_enable(ble_enable_params_t * p_ble_enable_params));
/**@brief Get an event from the pending events queue.
*
* @param[out] p_dest Pointer to buffer to be filled in with an event, or NULL to retrieve the event length. This buffer <b>must be 4-byte aligned in memory</b>.
* @param[in, out] p_len Pointer the length of the buffer, on return it is filled with the event length.
*
* @details This call allows the application to pull a BLE event from the BLE stack. The application is signalled that an event is
* available from the BLE stack by the triggering of the SD_EVT_IRQn interrupt.
* The application is free to choose whether to call this function from thread mode (main context) or directly from the Interrupt Service Routine
* that maps to SD_EVT_IRQn. In any case however, and because the BLE stack runs at a higher priority than the application, this function should be called
* in a loop (until @ref NRF_ERROR_NOT_FOUND is returned) every time SD_EVT_IRQn is raised to ensure that all available events are pulled from the BLE stack.
* Failure to do so could potentially leave events in the internal queue without the application being aware of this fact.
* Sizing the p_dest buffer is equally important, since the application needs to provide all the memory necessary for the event to be copied into
* application memory. If the buffer provided is not large enough to fit the entire contents of the event, @ref NRF_ERROR_DATA_SIZE will be returned
* and the application can then call again with a larger buffer size.
* Please note that because of the variable length nature of some events, sizeof(ble_evt_t) will not always be large enough to fit certain events,
* and so it is the application's responsibility to provide an amount of memory large enough so that the relevant event is copied in full.
* The application may "peek" the event length by providing p_dest as a NULL pointer and inspecting the value of *p_len upon return.
*
* @note The pointer supplied must be aligned to the extend defined by @ref BLE_EVTS_PTR_ALIGNMENT
*
* @retval ::NRF_SUCCESS Event pulled and stored into the supplied buffer.
* @retval ::NRF_ERROR_INVALID_ADDR Invalid or not sufficiently aligned pointer supplied.
* @retval ::NRF_ERROR_NOT_FOUND No events ready to be pulled.
* @retval ::NRF_ERROR_DATA_SIZE Event ready but could not fit into the supplied buffer.
*/
SVCALL(SD_BLE_EVT_GET, uint32_t, sd_ble_evt_get(uint8_t *p_dest, uint16_t *p_len));
/**@brief Get the total number of available application transmission buffers per link in the BLE stack.
*
* @details This call allows the application to obtain the total number of
* transmission buffers available per link for application data. Please note that
* this does not give the number of free buffers, but rather the total amount of them.
* The application has two options to handle its own application transmission buffers:
* - Use a simple arithmetic calculation: at boot time the application should use this function
* to find out the total amount of buffers available to it and store it in a variable.
* Every time a packet that consumes an application buffer is sent using any of the
* exposed functions in this BLE API, the application should decrement that variable.
* Conversely, whenever a @ref BLE_EVT_TX_COMPLETE event is received by the application
* it should retrieve the count field in such event and add that number to the same
* variable storing the number of available packets.
* This mechanism allows the application to be aware at any time of the number of
* application packets available in the BLE stack's internal buffers, and therefore
* it can know with certainty whether it is possible to send more data or it has to
* wait for a @ref BLE_EVT_TX_COMPLETE event before it proceeds.
* - Choose to simply not keep track of available buffers at all, and instead handle the
* @ref BLE_ERROR_NO_TX_BUFFERS error by queueing the packet to be transmitted and
* try again as soon as a @ref BLE_EVT_TX_COMPLETE event arrives.
*
* The API functions that <b>may</b> consume an application buffer depending on
* the parameters supplied to them can be found below:
*
* - @ref sd_ble_gattc_write (write without response only)
* - @ref sd_ble_gatts_hvx (notifications only)
* - @ref sd_ble_l2cap_tx (all packets)
*
* @param[out] p_count Pointer to a uint8_t which will contain the number of application transmission buffers upon
* successful return.
*
* @retval ::NRF_SUCCESS Number of application transmission buffers retrieved successfully.
* @retval ::NRF_ERROR_INVALID_ADDR Invalid pointer supplied.
*/
SVCALL(SD_BLE_TX_BUFFER_COUNT_GET, uint32_t, sd_ble_tx_buffer_count_get(uint8_t *p_count));
/**@brief Add a Vendor Specific UUID.
*
* @details This call enables the application to add a vendor specific UUID to the BLE stack's table,
* for later use all other modules and APIs. This then allows the application to use the shorter,
* 24-bit @ref ble_uuid_t format when dealing with both 16-bit and 128-bit UUIDs without having to
* check for lengths and having split code paths. The way that this is accomplished is by extending the
* grouping mechanism that the Bluetooth SIG standard base UUID uses for all other 128-bit UUIDs. The
* type field in the @ref ble_uuid_t structure is an index (relative to @ref BLE_UUID_TYPE_VENDOR_BEGIN)
* to the table populated by multiple calls to this function, and the uuid field in the same structure
* contains the 2 bytes at indices 12 and 13. The number of possible 128-bit UUIDs available to the
* application is therefore the number of Vendor Specific UUIDs added with the help of this function times 65536,
* although restricted to modifying bytes 12 and 13 for each of the entries in the supplied array.
*
* @note Bytes 12 and 13 of the provided UUID will not be used internally, since those are always replaced by
* the 16-bit uuid field in @ref ble_uuid_t.
*
*
* @param[in] p_vs_uuid Pointer to a 16-octet (128-bit) little endian Vendor Specific UUID disregarding
* bytes 12 and 13.
* @param[out] p_uuid_type Pointer to a uint8_t where the type field in @ref ble_uuid_t corresponding to this UUID will be stored.
*
* @retval ::NRF_SUCCESS Successfully added the Vendor Specific UUID.
* @retval ::NRF_ERROR_INVALID_ADDR If p_vs_uuid or p_uuid_type is NULL or invalid.
* @retval ::NRF_ERROR_NO_MEM If there are no more free slots for VS UUIDs.
* @retval ::NRF_ERROR_FORBIDDEN If p_vs_uuid has already been added to the VS UUID table.
*/
SVCALL(SD_BLE_UUID_VS_ADD, uint32_t, sd_ble_uuid_vs_add(ble_uuid128_t const *p_vs_uuid, uint8_t *p_uuid_type));
/** @brief Decode little endian raw UUID bytes (16-bit or 128-bit) into a 24 bit @ref ble_uuid_t structure.
*
* @details The raw UUID bytes excluding bytes 12 and 13 (i.e. bytes 0-11 and 14-15) of p_uuid_le are compared
* to the corresponding ones in each entry of the table of vendor specific UUIDs populated with @ref sd_ble_uuid_vs_add
* to look for a match. If there is such a match, bytes 12 and 13 are returned as p_uuid->uuid and the index
* relative to @ref BLE_UUID_TYPE_VENDOR_BEGIN as p_uuid->type.
*
* @note If the UUID length supplied is 2, then the type set by this call will always be @ref BLE_UUID_TYPE_BLE.
*
* @param[in] uuid_le_len Length in bytes of the buffer pointed to by p_uuid_le (must be 2 or 16 bytes).
* @param[in] p_uuid_le Pointer pointing to little endian raw UUID bytes.
* @param[out] p_uuid Pointer to a @ref ble_uuid_t structure to be filled in.
*
* @retval ::NRF_SUCCESS Successfully decoded into the @ref ble_uuid_t structure.
* @retval ::NRF_ERROR_INVALID_ADDR Invalid pointer supplied.
* @retval ::NRF_ERROR_INVALID_LENGTH Invalid UUID length.
* @retval ::NRF_ERROR_NOT_FOUND For a 128-bit UUID, no match in the populated table of UUIDs.
*/
SVCALL(SD_BLE_UUID_DECODE, uint32_t, sd_ble_uuid_decode(uint8_t uuid_le_len, uint8_t const *p_uuid_le, ble_uuid_t *p_uuid));
/** @brief Encode a @ref ble_uuid_t structure into little endian raw UUID bytes (16-bit or 128-bit).
*
* @note The pointer to the destination buffer p_uuid_le may be NULL, in which case only the validity and size of p_uuid is computed.
*
* @param[in] p_uuid Pointer to a @ref ble_uuid_t structure that will be encoded into bytes.
* @param[out] p_uuid_le_len Pointer to a uint8_t that will be filled with the encoded length (2 or 16 bytes).
* @param[out] p_uuid_le Pointer to a buffer where the little endian raw UUID bytes (2 or 16) will be stored.
*
* @retval ::NRF_SUCCESS Successfully encoded into the buffer.
* @retval ::NRF_ERROR_INVALID_ADDR Invalid pointer supplied.
* @retval ::NRF_ERROR_INVALID_PARAM Invalid UUID type.
*/
SVCALL(SD_BLE_UUID_ENCODE, uint32_t, sd_ble_uuid_encode(ble_uuid_t const *p_uuid, uint8_t *p_uuid_le_len, uint8_t *p_uuid_le));
/**@brief Get Version Information.
*
* @details This call allows the application to get the BLE stack version information.
*
* @param[out] p_version Pointer to a ble_version_t structure to be filled in.
*
* @retval ::NRF_SUCCESS Version information stored successfully.
* @retval ::NRF_ERROR_INVALID_ADDR Invalid pointer supplied.
* @retval ::NRF_ERROR_BUSY The BLE stack is busy (typically doing a locally-initiated disconnection procedure).
*/
SVCALL(SD_BLE_VERSION_GET, uint32_t, sd_ble_version_get(ble_version_t *p_version));
/**@brief Provide a user memory block.
*
* @note This call can only be used as a response to a @ref BLE_EVT_USER_MEM_REQUEST event issued to the application.
*
* @param[in] conn_handle Connection handle.
* @param[in,out] p_block Pointer to a user memory block structure.
*
* @retval ::NRF_SUCCESS Successfully queued a response to the peer.
* @retval ::BLE_ERROR_INVALID_CONN_HANDLE Invalid Connection Handle.
* @retval ::NRF_ERROR_INVALID_STATE Invalid Connection state or no execute write request pending.
* @retval ::NRF_ERROR_BUSY The BLE stack is busy. Retry at later time.
*/
SVCALL(SD_BLE_USER_MEM_REPLY, uint32_t, sd_ble_user_mem_reply(uint16_t conn_handle, ble_user_mem_block_t const *p_block));
/**@brief Set a BLE option.
*
* @details This call allows the application to set the value of an option.
*
* @param[in] opt_id Option ID.
* @param[in] p_opt Pointer to a ble_opt_t structure containing the option value.
*
* @retval ::NRF_SUCCESS Option set successfully.
* @retval ::NRF_ERROR_INVALID_ADDR Invalid pointer supplied.
* @retval ::BLE_ERROR_INVALID_CONN_HANDLE Invalid Connection Handle.
* @retval ::NRF_ERROR_INVALID_PARAM Invalid parameter(s) supplied, check parameter limits and constraints.
* @retval ::NRF_ERROR_INVALID_STATE Unable to set the parameter at this time.
* @retval ::NRF_ERROR_BUSY The BLE stack is busy or the previous procedure has not completed.
*/
SVCALL(SD_BLE_OPT_SET, uint32_t, sd_ble_opt_set(uint32_t opt_id, ble_opt_t const *p_opt));
/**@brief Get a BLE option.
*
* @details This call allows the application to retrieve the value of an option.
*
* @param[in] opt_id Option ID.
* @param[out] p_opt Pointer to a ble_opt_t structure to be filled in.
*
* @retval ::NRF_SUCCESS Option retrieved successfully.
* @retval ::NRF_ERROR_INVALID_ADDR Invalid pointer supplied.
* @retval ::BLE_ERROR_INVALID_CONN_HANDLE Invalid Connection Handle.
* @retval ::NRF_ERROR_INVALID_PARAM Invalid parameter(s) supplied, check parameter limits and constraints.
* @retval ::NRF_ERROR_INVALID_STATE Unable to retrieve the parameter at this time.
* @retval ::NRF_ERROR_BUSY The BLE stack is busy or the previous procedure has not completed.
* @retval ::NRF_ERROR_NOT_SUPPORTED This option is not supported.
*
*/
SVCALL(SD_BLE_OPT_GET, uint32_t, sd_ble_opt_get(uint32_t opt_id, ble_opt_t *p_opt));
/** @} */
#endif /* BLE_H__ */
/**
@}
@}
*/